Analysis of Linear and Non-linear Wave Equations: Regularity, Asymptotics, and Blowup
线性和非线性波动方程的分析:正则性、渐近性和爆炸
基本信息
- 批准号:0701087
- 负责人:
- 金额:$ 11.5万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2007
- 资助国家:美国
- 起止时间:2007-07-01 至 2011-06-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Analysis of Linear and Nonlinear Wave Equations: regularity, asymptotics and blowup.Abstract of Proposed Research Jacob K SterbenzThis project is to investigate a variety of problems involving both the regularity and the long time behavior of solutions of linear and non-linear wave equations. The fundamental goal is to understand the asymptotic behavior of such systems in a wide range of contexts, from local phenomena such as the spontaneous formation of singularities, to delicate dispersive properties which take place over infinite space-time scales. The main themes of recent research in this area has been critical regularity results for geometric wave equations, blowup phenomena for such equations in critical dimensions, and the asymptotic stability of key linear and non-linear models. This is a very active field of current research. Effective strategies and techniques which yield insight into these problems will have non-trivial overlap with many other areas of classical and modern mathematics such as spectral and scattering theory, differential geometry, real variable methods of harmonic analysis, and the construction and implementation of numerical simulations.These systems arise as models of many different problems in physics, including the underlying classical field theories of electro-magnetism, nonlinear elasticity, the equations of linearized gravitational radiation, quantum mechanics and quantum field theory. The mathematical issues to be studied here all are related to the basic question of describing the dynamical properties of linear and nonlinear physical systems. Progress on the mathematical analysis of these problems should lead to a much better understanding, as well as prediction and perhaps control, of these physical phenomena.
分析线性和非线性波动方程:规律性,渐近性和blowup.摘要建议的研究雅各布K SterbenzThis项目是调查各种问题涉及的规律性和长期行为的解决方案的线性和非线性波动方程。其基本目标是了解这些系统在广泛的背景下的渐近行为,从局部现象,如奇点的自发形成,到发生在无限时空尺度上的微妙的色散特性。最近在这一领域的研究的主题是几何波动方程的临界正则性结果,这种方程在临界尺寸的爆破现象,以及关键的线性和非线性模型的渐近稳定性。这是当前研究的一个非常活跃的领域。有效的策略和技术,产生洞察这些问题将有非平凡的重叠与许多其他领域的经典和现代数学,如光谱和散射理论,微分几何,真实的变量方法的谐波分析,以及建设和实施的数值模拟。这些系统出现的模型,许多不同的问题,在物理学,包括电磁学、非线性弹性力学、线性化引力辐射方程、量子力学和量子场论的基本经典场论。这里所要研究的数学问题都与描述线性和非线性物理系统的动力学性质的基本问题有关。 对这些问题的数学分析的进展应该会导致对这些物理现象的更好的理解,以及预测和控制。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Jacob Sterbenz其他文献
Local energy decay for scalar fields on time dependent non-trapping backgrounds
时间相关非捕获背景上标量场的局部能量衰减
- DOI:
10.1353/ajm.2020.0019 - 发表时间:
2017 - 期刊:
- 影响因子:1.7
- 作者:
Jason Metcalfe;Jacob Sterbenz;D. Tataru - 通讯作者:
D. Tataru
Global Regularity for General Non-Linear Wave Equations I. (6 + 1) and Higher Dimensions
- DOI:
10.1081/pde-200037764 - 发表时间:
2004-02 - 期刊:
- 影响因子:1.9
- 作者:
Jacob Sterbenz - 通讯作者:
Jacob Sterbenz
Global regularity and scattering for general non-linear wave equations II. (4+1) dimensional Yang-Mills equations in the Lorentz gauge
- DOI:
10.1353/ajm.2007.0020 - 发表时间:
2004-02 - 期刊:
- 影响因子:1.7
- 作者:
Jacob Sterbenz - 通讯作者:
Jacob Sterbenz
Explicit Bounds for the Return Probability of Simple Random Walks
简单随机游走返回概率的显式界限
- DOI:
10.1007/s10959-003-2606-7 - 发表时间:
2005 - 期刊:
- 影响因子:0
- 作者:
K. Ball;Jacob Sterbenz - 通讯作者:
Jacob Sterbenz
Local Energy Decay for Maxwell Fields Part I: Spherically Symmetric Black-Hole Backgrounds
麦克斯韦场的局部能量衰变第一部分:球对称黑洞背景
- DOI:
- 发表时间:
2013 - 期刊:
- 影响因子:0
- 作者:
Jacob Sterbenz;D. Tataru - 通讯作者:
D. Tataru
Jacob Sterbenz的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Jacob Sterbenz', 18)}}的其他基金
Global Analysis of Non-Linear Wave Equations
非线性波动方程的整体分析
- 批准号:
1001675 - 财政年份:2010
- 资助金额:
$ 11.5万 - 项目类别:
Standard Grant
相似国自然基金
Development of a Linear Stochastic Model for Wind Field Reconstruction from Limited Measurement Data
- 批准号:
- 批准年份:2020
- 资助金额:40 万元
- 项目类别:
相似海外基金
Structural Performance Analysis of a Floating Green Energy Storage Subjected to Non-Linear Loads
非线性载荷下浮动绿色储能结构性能分析
- 批准号:
2902122 - 财政年份:2024
- 资助金额:
$ 11.5万 - 项目类别:
Studentship
Non-linear large signal network analysis
非线性大信号网络分析
- 批准号:
512477106 - 财政年份:2023
- 资助金额:
$ 11.5万 - 项目类别:
Major Research Instrumentation
Non-linear vector network analysis
非线性矢量网络分析
- 批准号:
512476737 - 财政年份:2023
- 资助金额:
$ 11.5万 - 项目类别:
Major Research Instrumentation
Non-destructive evaluation of 3D plastic strain and residual stress distributions induced by earthquakes using non-linear inverse analysis
使用非线性反演分析对地震引起的 3D 塑性应变和残余应力分布进行无损评估
- 批准号:
22K03831 - 财政年份:2022
- 资助金额:
$ 11.5万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Investigating new approaches for narrowband but nevertheless high-precision wireless locating in multipath environments by means of iterative recursive non-linear state estimation techniques based on aperture synthesis and phase difference analysis in ant
基于ant中孔径合成和相位差分析的迭代递归非线性状态估计技术,研究多路径环境中窄带但高精度无线定位的新方法
- 批准号:
450697408 - 财政年份:2021
- 资助金额:
$ 11.5万 - 项目类别:
Research Grants
An analysis of goal setting and non-linear incentive schemes
目标设定和非线性激励方案分析
- 批准号:
21K13406 - 财政年份:2021
- 资助金额:
$ 11.5万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Analysis of Non-linear Equations on Graphs
图上的非线性方程分析
- 批准号:
544940-2019 - 财政年份:2019
- 资助金额:
$ 11.5万 - 项目类别:
Alexander Graham Bell Canada Graduate Scholarships - Master's
Fundamental Study on Modeling of Reinforced Concrete Member with Secondary Walls in Non-linear Frame Analysis
非线性框架分析中带次墙钢筋混凝土构件建模的基础研究
- 批准号:
19K04688 - 财政年份:2019
- 资助金额:
$ 11.5万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
On the structure analysis of measure value solutions and singular sets for non-linear drift diffusion systems
非线性漂移扩散系统测值解与奇异集的结构分析
- 批准号:
19K03561 - 财政年份:2019
- 资助金额:
$ 11.5万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Non-Linear numerical analysis of offshore monopiles under dynamic loading
动载下海上单桩的非线性数值分析
- 批准号:
2272457 - 财政年份:2019
- 资助金额:
$ 11.5万 - 项目类别:
Studentship














{{item.name}}会员




