RUI: Orthonormal Fourier Bases and Iterated Function Systems

RUI:正交傅立叶基和迭代函数系统

基本信息

  • 批准号:
    0701164
  • 负责人:
  • 金额:
    --
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2007
  • 资助国家:
    美国
  • 起止时间:
    2007-08-15 至 2011-07-31
  • 项目状态:
    已结题

项目摘要

ABSTRACTThe investigators study Fourier bases of Hilbert spaces associated with affine iterated function systems (IFSs) on the real line and in higher dimensions. While much work in the last two decades has focused on the case in which the attractor of the IFS is a fractal with non-integral Hausdorff dimension, the investigators study IFSs with overlap. In the one-dimensional setting, the measures associated with these attractors are Erdos's self-similar convolution measures; in general the measures are invariant Hutchinson measures. Almost nothing is known about orthonormal bases associated with Hutchinson measures in the case of non-finite overlap, and in fact previous work of the investigators and P. Jorgensen has shown that the measures in the overlap cases have different properties from the non-overlap measures. The proposed work on IFSs is an exciting branch of harmonic analysis which connects to fractals, wavelets, and random walks; it also has applications to number theory, dynamics, and combinatorial geometry. The investigators draw on methods from all these fields in their work. The work in this proposal will involve further collaborations with P. Jorgensen at the University of Iowa. Iterated function systems (IFSs) embody the common themes of recursion and self-similarity. The investigators will study properties of IFSs and their associated geometry. In fact, a central theme in this work is the interplay between geometry and spectral analysis on fractals. There is a natural tension between studying fractals from a geometric point of view and from a spectral point of view; traditional time-frequency methods used in spectral analysis are linear, and the systems the investigators study are non-linear. The need to understand non-linear phenomena is motivated by a host of real-life applications. IFSs occur repeatedly in signal processing and communications. For example, wavelets, the key behind the JPEG 2000 compression standard, are a particular example of an IFS. Applications of iterated function systems extend far beyond communications---IFSs are used in data compression, quantum computing, pattern recognition, DNA computations, and a vast array of other fields. Furthermore, due to its wide applicability, work in this proposal will draw undergraduate students into mathematical research. The investigators will conduct research with undergraduates at Grinnell College, and published work by P. Jorgensen and the investigators has already been incorporated into research projects for undergraduates at the University of Iowa, as part of the Alliances for Graduate Education and the Professoriate (AGEP Alliance) and the Heartland Mathematics Partnership.
本文研究了在真实的直线上和高维空间中与仿射迭代函数系统(IFS)相关联的Hilbert空间的傅立叶基。虽然在过去的二十年里,许多工作都集中在IFS的吸引子是具有非整数Hausdorff维数的分形的情况下,研究人员研究IFS的重叠。在一维环境中,与这些吸引子相关的测度是鄂尔多斯自相似卷积测度;一般来说,这些测度是不变的哈钦森测度。几乎没有什么是已知的正交基与哈钦森措施在非有限重叠的情况下,事实上,以前的工作的调查人员和P. Jorgensen已经表明,措施在重叠的情况下,有不同的性质,从非重叠措施。关于IFS的拟议工作是调和分析的一个令人兴奋的分支,它与分形、小波和随机游走有关;它也应用于数论、动力学和组合几何。调查人员在工作中借鉴了所有这些领域的方法。这项提案中的工作将涉及与爱荷华州大学的P. Jorgensen的进一步合作。迭代函数系统(IFS)体现了递归和自相似的共同主题。研究人员将研究IFS的特性及其相关的几何形状。事实上,这项工作的一个中心主题是分形几何和光谱分析之间的相互作用。从几何的角度和从频谱的角度研究分形之间有一种天然的张力;传统的时频方法用于频谱分析是线性的,而研究人员研究的系统是非线性的。理解非线性现象的需要是由许多实际应用激发的。IFS在信号处理和通信中反复出现。例如,小波,JPEG 2000压缩标准背后的关键,是IFS的一个特定示例。迭代函数系统的应用远远超出了通信-IFS用于数据压缩,量子计算,模式识别,DNA计算和大量其他领域。此外,由于其广泛的适用性,这项建议的工作将吸引本科生进入数学研究。研究人员将与格林内尔学院的本科生一起进行研究,P. Jorgensen和研究人员发表的工作已经被纳入爱荷华州大学本科生的研究项目,作为研究生教育和教授联盟(AGEP联盟)和中心地带数学伙伴关系的一部分。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Karen Shuman其他文献

Karen Shuman的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

相似海外基金

Development of Orthonormal principal component analysis for categorical data and its applications
分类数据正交主成分分析的发展及其应用
  • 批准号:
    20K03303
  • 财政年份:
    2020
  • 资助金额:
    --
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Orthonormal divergence-free wavelet analysis of magnetic fieldgeneration mechanism in magnetohydrodynamic turbulence
磁流体动力湍流磁场产生机制的正交无散度小波分析
  • 批准号:
    22540509
  • 财政年份:
    2010
  • 资助金额:
    --
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Numerical simulation of turbulent flows in complex geometries using the CVS approach based on orthonormal wavelet decomposition
使用基于正交小波分解的 CVS 方法对复杂几何形状的湍流进行数值模拟
  • 批准号:
    5405071
  • 财政年份:
    2003
  • 资助金额:
    --
  • 项目类别:
    Research Units
Orthonormal systems, ideal norms and universal operators
正交系统、理想范数和通用算子
  • 批准号:
    5210736
  • 财政年份:
    1999
  • 资助金额:
    --
  • 项目类别:
    Independent Junior Research Groups
Orthonormal Wavelet Analysis of Space-Scale Relationships in the Atmospheric Boundary Layer Over Complex Terrain
复杂地形大气边界层空间尺度关系的正交小波分析
  • 批准号:
    9304331
  • 财政年份:
    1993
  • 资助金额:
    --
  • 项目类别:
    Continuing Grant
Mathematical Sciences: Orthonormal Bases for the Ambiguity Function/Harmonic Analysis on Two-Step Nilmanifolds
数学科学:两步尼尔流形上的模糊函数/调和分析的标准正交基
  • 批准号:
    8400621
  • 财政年份:
    1984
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
NON-ORTHONORMAL POLYNOMIAL METHOD APPLIED TO SOME POTENTIAL FLOW PROBLEMS
非正交多项式方法在某些潜在流动问题中的应用
  • 批准号:
    7246568
  • 财政年份:
    1972
  • 资助金额:
    --
  • 项目类别:
QUESTIONS ON ORTHONORMAL SETS
关于正交集的问题
  • 批准号:
    7244326
  • 财政年份:
    1972
  • 资助金额:
    --
  • 项目类别:
The Walsh and Related Orthonormal Systems
沃尔什和相关正交系统
  • 批准号:
    6929953
  • 财政年份:
    1969
  • 资助金额:
    --
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了