Topics in Composition Operators
组合运算符主题
基本信息
- 批准号:0701268
- 负责人:
- 金额:$ 9.68万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2007
- 资助国家:美国
- 起止时间:2007-06-01 至 2011-05-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
This project will study problems arising from the interaction of modern functional analysis and operator theory with classical complex function theory and dynamical systems. The problems to be studied involve norms and adjoints of composition operators and algebraic relations between Toeplitz operators and composition operators. A new connection between dynamical systems on subsets of the unit circle and composition operators, a connection based on parallels with the dynamics of quantum mechanical systems, will be explored. The principal investigator expects to develop innovative techniques for the computation of norms in both the one- and several-variable settings and to apply existing methods related to compactness questions to problems concerning adjoints and algebraic relations. In addition, a recently discovered linkage between composition operators and multidimensional linear systems will be investigated. The methods that the principal investigator intends to use draw on a wide range of techniques in modern analysis, including operator theory, functional analysis, measure theory, and harmonic analysis.Many mathematical problems in physics and engineering (and in pure mathematics, as well) can be expressed as problems about operators on spaces of functions. (This point of view led to the emergence of the field of operator-theoretic function theory, which has its origins in the work of David Hilbert in the early twentieth century.) One example of this phenomenon is "feedback control" in engineering. A host of problems that fit under this heading (such as designing an autopilot to stabilize an aircraft) are naturally posed as problems in operator theory. The success of this approach has expanded the class of problems that engineers now wish to solve, including the extension to several dimensions of results that are known in one dimension. Among other things, the principal investigator will study new connections between such problems and other problems in operator theory.
这个项目将研究现代泛函分析和算子理论与经典复函数理论和动力系统相互作用所产生的问题。所要研究的问题涉及复合算子的范数和伴随以及Toeplitz算子和复合算子之间的代数关系。将探索单位圆子集上的动力系统与复合算符之间的一种新的联系,一种基于与量子力学系统动力学平行的联系。首席研究人员希望开发创新的技术,在单变量和多变量环境下计算范数,并将现有的与紧致性问题有关的方法应用于有关伴随和代数关系的问题。此外,还将研究最近发现的复合算子和多维线性系统之间的联系。主要研究人员打算使用的方法吸收了现代分析中的广泛技术,包括算子理论、泛函分析、测度论和调和分析。物理和工程中的许多数学问题(以及在纯数学中也是如此)可以表示为关于函数空间上的算子的问题。(这种观点导致了算符理论函数论领域的出现,它起源于20世纪初大卫·希尔伯特的工作。)这种现象的一个例子是工程中的“反馈控制”。许多符合这一标题的问题(例如设计自动驾驶仪以稳定飞机)自然被认为是操作员理论中的问题。这种方法的成功扩大了工程师现在希望解决的问题的类别,包括将一个维度的已知结果扩展到多个维度。在其他方面,首席研究员将研究这些问题与算子理论中的其他问题之间的新联系。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Michael Jury其他文献
Michael Jury的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Michael Jury', 18)}}的其他基金
The 38th Southeastern Analysis Meeting (SEAM)
第38届东南分析会议(SEAM)
- 批准号:
2154455 - 财政年份:2022
- 资助金额:
$ 9.68万 - 项目类别:
Standard Grant
Free Analysis: Exploring the Interactions between Operator Theory and Noncommutative Function Theory
自由分析:探索算子理论与非交换函数论之间的相互作用
- 批准号:
2154494 - 财政年份:2022
- 资助金额:
$ 9.68万 - 项目类别:
Standard Grant
Multivariable Operator Theory: The Interplay between Function Theory, Operator Theory and Operator Algebras
多变量算子理论:函数论、算子理论和算子代数之间的相互作用
- 批准号:
1900364 - 财政年份:2019
- 资助金额:
$ 9.68万 - 项目类别:
Standard Grant
Topics in multivariable operator theory
多变量算子理论主题
- 批准号:
1101461 - 财政年份:2011
- 资助金额:
$ 9.68万 - 项目类别:
Standard Grant
相似海外基金
Research Initiation Award: Spectra of composition operators on analytic function spaces
研究启动奖:解析函数空间上的复合算子谱
- 批准号:
2000114 - 财政年份:2020
- 资助金额:
$ 9.68万 - 项目类别:
Standard Grant
Composition operators and Carleson and Aleksandrov measures
组合算子以及 Carleson 和 Aleksandrov 度量
- 批准号:
448795-2013 - 财政年份:2013
- 资助金额:
$ 9.68万 - 项目类别:
University Undergraduate Student Research Awards
Research on Jordan type model theory of weighted composition operators on Hilbert spaces
Hilbert空间上加权合成算子的Jordan型模型理论研究
- 批准号:
23540190 - 财政年份:2011
- 资助金额:
$ 9.68万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Toeplitz and composition operators on BMOA and bloch type spaces
BMOA 和 Bloch 型空间上的 Toeplitz 和复合算子
- 批准号:
105467-2005 - 财政年份:2009
- 资助金额:
$ 9.68万 - 项目类别:
Discovery Grants Program - Individual
Toeplitz and composition operators on BMOA and bloch type spaces
BMOA 和 Bloch 型空间上的 Toeplitz 和复合算子
- 批准号:
105467-2005 - 财政年份:2008
- 资助金额:
$ 9.68万 - 项目类别:
Discovery Grants Program - Individual
Toeplitz and composition operators on BMOA and bloch type spaces
BMOA 和 Bloch 型空间上的 Toeplitz 和复合算子
- 批准号:
105467-2005 - 财政年份:2007
- 资助金额:
$ 9.68万 - 项目类别:
Discovery Grants Program - Individual
Research on spectral structure of dissipative operators and super composition of dissipative systems
耗散算子谱结构及耗散系统超组合研究
- 批准号:
19540189 - 财政年份:2007
- 资助金额:
$ 9.68万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Toeplitz and composition operators on BMOA and bloch type spaces
BMOA 和 Bloch 型空间上的 Toeplitz 和复合算子
- 批准号:
105467-2005 - 财政年份:2006
- 资助金额:
$ 9.68万 - 项目类别:
Discovery Grants Program - Individual
Studies on composition operators and spectrum-preserving maps
合成算子和保谱图的研究
- 批准号:
18540167 - 财政年份:2006
- 资助金额:
$ 9.68万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Toeplitz and composition operators on BMOA and bloch type spaces
BMOA 和 Bloch 型空间上的 Toeplitz 和复合算子
- 批准号:
105467-2005 - 财政年份:2005
- 资助金额:
$ 9.68万 - 项目类别:
Discovery Grants Program - Individual