Arithmetic Algebraic Geometry
算术代数几何
基本信息
- 批准号:0701395
- 负责人:
- 金额:$ 35.4万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2007
- 资助国家:美国
- 起止时间:2007-07-01 至 2011-12-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Abstract for the award DMS-0701395 of Katz The principal investigator proposes to continue work in arithmetic algebraic geometry, especially the l-adic cohomology of varieties over finite fields, exponential sums over finite fields, their associated L-functions, the determination of monodromy groups, and the application of that determination to the earlier questions. Some of the main tools are group theory, Fourier Transform, and the theory of perverse sheaves. Particular topics of investigation include the calculation of monodromy groups, the equidistribution of character sums as the multiplicative character varies, and some 'horizontal' equidistribution questions attached to fixed varieties over Z[1/n] and varying primes p for which no theoretical framework, even conjectural, yet exists. The broader impact of this project is three-fold. While it is too soon to appraise the wide societal impact of this particular project, the last two decades have seen stunning practical application in many fields (e.g., telecommunications, cryptology, and computer security, to name just a few) of a great deal of algebraic geometry over finite fields, some of which goes back to the nineteenth century, and all of which seemed quite arcane at the time it was being done. On a more immediate scale, the project will lead to a great deal of interaction with postdoctoral fellows, graduate students, and advanced undergraduates, both in theoretical collaborations and in the carrying out of computer experiments. From the narrowest point of view, the project will advance our understanding of the analogies between the finite field case and the number field case, analogies which have already played an important role in shaping our very thinking about number theory.
Katz的DMS-0701395奖摘要 首席研究员建议继续工作的算术代数几何,特别是L-进上同调的品种在有限领域,指数和有限领域,其相关的L-功能,确定monodromy组,并应用该决定的早期问题。一些主要的工具是群论,傅立叶变换和反常层理论。调查的特定主题包括计算monodromy组,equidistribution的字符和乘法字符的变化,以及一些'水平' equidistribution问题附加到固定品种在Z[1/n]和不同的素数p,其中没有理论框架,甚至是代数,还存在。 该项目的广泛影响有三个方面。虽然现在评估这个特定项目的广泛社会影响还为时过早,但在过去的二十年里,在许多领域都有令人惊叹的实际应用(例如,电信,密码学和计算机安全,仅举几例)的大量代数几何在有限域上,其中一些可以追溯到世纪,所有这些似乎相当《双城之战》在当时正在做。 在更直接的规模上,该项目将导致与博士后研究员,研究生和高级本科生的大量互动,无论是在理论合作还是在计算机实验的进行中。从最新的角度来看,该项目将促进我们对有限域情况和数域情况之间的类比的理解,这些类比已经在塑造我们对数论的思考中发挥了重要作用。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Nicholas Katz其他文献
Nicholas Katz的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Nicholas Katz', 18)}}的其他基金
Studies in arithmetic algebraic geometry
算术代数几何研究
- 批准号:
1068247 - 财政年份:2011
- 资助金额:
$ 35.4万 - 项目类别:
Continuing Grant
Mathematical Sciences: Arithmetic Algebraic Geometry
数学科学:算术代数几何
- 批准号:
9506412 - 财政年份:1995
- 资助金额:
$ 35.4万 - 项目类别:
Continuing Grant
Mathematical Sciences: Arithmetic Algebraic Geometry
数学科学:算术代数几何
- 批准号:
9203843 - 财政年份:1992
- 资助金额:
$ 35.4万 - 项目类别:
Continuing Grant
Mathematical Sciences: Arithmetic Algebraic Geometry
数学科学:算术代数几何
- 批准号:
8703372 - 财政年份:1987
- 资助金额:
$ 35.4万 - 项目类别:
Continuing Grant
相似国自然基金
同伦和Hodge理论的方法在Algebraic Cycle中的应用
- 批准号:11171234
- 批准年份:2011
- 资助金额:40.0 万元
- 项目类别:面上项目
相似海外基金
Conference on Arithmetic Geometry and Algebraic Groups
算术几何与代数群会议
- 批准号:
2305231 - 财政年份:2023
- 资助金额:
$ 35.4万 - 项目类别:
Standard Grant
Arithmetic geometry and algebraic number theory
算术几何与代数数论
- 批准号:
CRC-2017-00306 - 财政年份:2022
- 资助金额:
$ 35.4万 - 项目类别:
Canada Research Chairs
Anabelian methods in arithmetic and algebraic geometry
算术和代数几何中的阿纳贝尔方法
- 批准号:
RGPIN-2022-03116 - 财政年份:2022
- 资助金额:
$ 35.4万 - 项目类别:
Discovery Grants Program - Individual
Derived categories in arithmetic and algebraic geometry
算术和代数几何的派生范畴
- 批准号:
DGECR-2022-00444 - 财政年份:2022
- 资助金额:
$ 35.4万 - 项目类别:
Discovery Launch Supplement
Derived categories in arithmetic and algebraic geometry
算术和代数几何的派生范畴
- 批准号:
RGPIN-2022-03461 - 财政年份:2022
- 资助金额:
$ 35.4万 - 项目类别:
Discovery Grants Program - Individual
Arithmetic Algebraic Geometry
算术代数几何
- 批准号:
RGPIN-2018-06094 - 财政年份:2022
- 资助金额:
$ 35.4万 - 项目类别:
Discovery Grants Program - Individual
Algebraic and Arithmetic Geometry via Stacks
通过堆栈学习代数和算术几何
- 批准号:
RGPIN-2022-02980 - 财政年份:2022
- 资助金额:
$ 35.4万 - 项目类别:
Discovery Grants Program - Individual
Anabelian methods in arithmetic and algebraic geometry
算术和代数几何中的阿纳贝尔方法
- 批准号:
DGECR-2022-00434 - 财政年份:2022
- 资助金额:
$ 35.4万 - 项目类别:
Discovery Launch Supplement
Noncommutative Algebras and Their Interactions With Algebraic and Arithmetic Geometry
非交换代数及其与代数和算术几何的相互作用
- 批准号:
2101761 - 财政年份:2021
- 资助金额:
$ 35.4万 - 项目类别:
Standard Grant
Arithmetic Algebraic Geometry
算术代数几何
- 批准号:
RGPIN-2018-06094 - 财政年份:2021
- 资助金额:
$ 35.4万 - 项目类别:
Discovery Grants Program - Individual














{{item.name}}会员




