Arithmetic Algebraic Geometry

算术代数几何

基本信息

  • 批准号:
    RGPIN-2018-06094
  • 负责人:
  • 金额:
    $ 1.46万
  • 依托单位:
  • 依托单位国家:
    加拿大
  • 项目类别:
    Discovery Grants Program - Individual
  • 财政年份:
    2021
  • 资助国家:
    加拿大
  • 起止时间:
    2021-01-01 至 2022-12-31
  • 项目状态:
    已结题

项目摘要

Abelian varieties; Algebraic cycles; Euler-Kronecker constants; Explicit arithmetic; L-functions; Security and Privacy; Selmer groups
阿贝利亚品种;代数周期; Euler-Kronecker常数;显式算术; l功能;安全与隐私; Selmer组

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Murty, Vijayakumar其他文献

Murty, Vijayakumar的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Murty, Vijayakumar', 18)}}的其他基金

Arithmetic Algebraic Geometry
算术代数几何
  • 批准号:
    RGPIN-2018-06094
  • 财政年份:
    2022
  • 资助金额:
    $ 1.46万
  • 项目类别:
    Discovery Grants Program - Individual
Mathematics for Public Health (MfPH)
公共卫生数学(MfPH)
  • 批准号:
    560523-2020
  • 财政年份:
    2021
  • 资助金额:
    $ 1.46万
  • 项目类别:
    Emerging Infectious Diseases Modelling Initiative (EIDM)
Mathematics for Public Health (MfPH)
公共卫生数学(MfPH)
  • 批准号:
    560523-2020
  • 财政年份:
    2020
  • 资助金额:
    $ 1.46万
  • 项目类别:
    Emerging Infectious Diseases Modelling Initiative (EIDM)
Arithmetic Algebraic Geometry
算术代数几何
  • 批准号:
    RGPIN-2018-06094
  • 财政年份:
    2020
  • 资助金额:
    $ 1.46万
  • 项目类别:
    Discovery Grants Program - Individual
Arithmetic Algebraic Geometry
算术代数几何
  • 批准号:
    RGPIN-2018-06094
  • 财政年份:
    2019
  • 资助金额:
    $ 1.46万
  • 项目类别:
    Discovery Grants Program - Individual
Arithmetic Algebraic Geometry
算术代数几何
  • 批准号:
    RGPIN-2018-06094
  • 财政年份:
    2018
  • 资助金额:
    $ 1.46万
  • 项目类别:
    Discovery Grants Program - Individual
Arithmetic Algebraic Geometry
算术代数几何
  • 批准号:
    44342-2013
  • 财政年份:
    2017
  • 资助金额:
    $ 1.46万
  • 项目类别:
    Discovery Grants Program - Individual
Arithmetic Algebraic Geometry
算术代数几何
  • 批准号:
    44342-2013
  • 财政年份:
    2016
  • 资助金额:
    $ 1.46万
  • 项目类别:
    Discovery Grants Program - Individual
Arithmetic Algebraic Geometry
算术代数几何
  • 批准号:
    44342-2013
  • 财政年份:
    2015
  • 资助金额:
    $ 1.46万
  • 项目类别:
    Discovery Grants Program - Individual
Revokeable access to content
可撤销的内容访问权限
  • 批准号:
    485841-2015
  • 财政年份:
    2015
  • 资助金额:
    $ 1.46万
  • 项目类别:
    Engage Grants Program

相似国自然基金

广义四元数代数上的若干超矩阵方程组及应用
  • 批准号:
    12371023
  • 批准年份:
    2023
  • 资助金额:
    43.5 万元
  • 项目类别:
    面上项目
Fock-Sobolev空间上的算子与算子代数
  • 批准号:
    12371127
  • 批准年份:
    2023
  • 资助金额:
    43.5 万元
  • 项目类别:
    面上项目
李代数与有限W代数的Whittaker型表示和有限维表示
  • 批准号:
    12371026
  • 批准年份:
    2023
  • 资助金额:
    44 万元
  • 项目类别:
    面上项目
两流体代数模型新拓展及对反常核结构现象的理论研究
  • 批准号:
    12375113
  • 批准年份:
    2023
  • 资助金额:
    52 万元
  • 项目类别:
    面上项目
代数K理论、代数数论及其在编码密码中的应用
  • 批准号:
    12371035
  • 批准年份:
    2023
  • 资助金额:
    43.5 万元
  • 项目类别:
    面上项目

相似海外基金

Conference on Arithmetic Geometry and Algebraic Groups
算术几何与代数群会议
  • 批准号:
    2305231
  • 财政年份:
    2023
  • 资助金额:
    $ 1.46万
  • 项目类别:
    Standard Grant
Anabelian methods in arithmetic and algebraic geometry
算术和代数几何中的阿纳贝尔方法
  • 批准号:
    RGPIN-2022-03116
  • 财政年份:
    2022
  • 资助金额:
    $ 1.46万
  • 项目类别:
    Discovery Grants Program - Individual
Arithmetic geometry and algebraic number theory
算术几何与代数数论
  • 批准号:
    CRC-2017-00306
  • 财政年份:
    2022
  • 资助金额:
    $ 1.46万
  • 项目类别:
    Canada Research Chairs
Derived categories in arithmetic and algebraic geometry
算术和代数几何的派生范畴
  • 批准号:
    DGECR-2022-00444
  • 财政年份:
    2022
  • 资助金额:
    $ 1.46万
  • 项目类别:
    Discovery Launch Supplement
Derived categories in arithmetic and algebraic geometry
算术和代数几何的派生范畴
  • 批准号:
    RGPIN-2022-03461
  • 财政年份:
    2022
  • 资助金额:
    $ 1.46万
  • 项目类别:
    Discovery Grants Program - Individual
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了