Arithmetic Algebraic Geometry
算术代数几何
基本信息
- 批准号:RGPIN-2018-06094
- 负责人:
- 金额:$ 2.91万
- 依托单位:
- 依托单位国家:加拿大
- 项目类别:Discovery Grants Program - Individual
- 财政年份:2022
- 资助国家:加拿大
- 起止时间:2022-01-01 至 2023-12-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
We will study several problems related to algebraic cycles and Abelian varieties, L-functions and mathematics arising from Information Technology.1) In the arithmetic and geometry of Abelian varieties, conjectures about algebraic cycles are fundamental. The classical conjectures of Hodge and Tate give us methods of recognizing subvarieties (and their linear combinations) in algebraic varieties. In the case of Abelian varieties, the additional group structure and the simple structure of the cohomology makes people more explicit formulations. Our recent work about understanding the relationship between cohomological spaces of cycles on an Abelian variety and on its reduction modulo a prime is aimed at increasing our understanding of algebraic cycles, though this goal may be far off. However, there are many problems which seem quite accessible (such as proving that a cohomology class can be declared to be a Tate class by checking the action of a finite number of Frobenius elements) and this project will focus on a few of those, based on recent work by the author.2) Another fundamental tool in number theory is that of L-function, an analytic object built from local data, which mysteriously learns about global data. In our project, we will actually look at spaces of L-functions that have additional algebraic structure (they form a ring). The purpose of studying collections of L-functions is to then ascertain what properties can actually be 'deformed' along a collection. Again, this kind of question is still too vague and too distant, and to get to the point where we might start thinking about such questions, we need to analyze the analysis and hopefully the geometry and topology of spaces of L-functions. Some first steps have been taken with the definitions of the Selberg and Lindelof classes. In this project, we will continue to work to clarify the algebraic structure of the Lindelof class. 3) There are many mathematical questions that are inspired by problems in information technology. One is to make explicit the arithmetic on Abelian varieties over finite fields. These are higher dimensional versions of elliptic curves and one might hope to form a public-key encryption scheme using such objects. There are of course some impediments to this such as new attacks on higher dimensional varieties and the possible construction of a quantum computer. Nevertheless, understanding explicitly, and hence computationally, the arithmetic on these higher dimensional varieties may for the foundation of a new kind of encryption scheme, not exactly modeled on the discrete logarithm, but perhaps on the more quantum-resistant model using isogenies. In addition to this kind of fundamental mathematical work, there are also problems involving algorithms to ensure security and privacy in transactions such as e-payments and e-health.
我们将研究几个与代数圈和阿贝尔簇、L-函数以及信息技术引起的数学有关的问题。1)在阿贝尔簇的算术和几何中,关于代数圈的知识是基本的。Hodge和Tate的经典代数给出了在代数簇中识别子簇(及其线性组合)的方法。在阿贝尔簇的情况下,额外的群结构和上同调的简单结构使人们有更明确的表述。我们最近的工作了解的关系上同调空间的周期的阿贝尔品种和其减少模一个总理的目的是增加我们的理解代数周期,虽然这个目标可能是遥远的。然而,有许多问题似乎很容易理解(例如证明一个上同调类可以通过检查有限数量的Frobenius元素的作用来声明为Tate类),本项目将基于作者最近的工作重点关注其中的一些。2)数论中的另一个基本工具是L-函数,一个从局部数据构建的分析对象,它神秘地了解全球数据。在我们的项目中,我们实际上将研究具有额外代数结构的L-函数空间(它们形成一个环)。研究L-函数集合的目的是确定什么性质可以沿着集合“变形”。同样,这类问题仍然太模糊和遥远,为了达到我们可能开始思考这些问题的地步,我们需要分析L-函数空间的分析,希望还有几何和拓扑。一些初步的步骤已经采取了Selberg和Lindelof类的定义。在这个项目中,我们将继续致力于阐明林德洛夫类的代数结构。3)有许多数学问题的灵感来自于信息技术中的问题。一个是明确有限域上Abel簇的运算。这些是椭圆曲线的高维版本,人们可能希望使用这些对象形成公钥加密方案。当然,这也有一些障碍,比如对更高维度的新攻击以及量子计算机的可能构建。然而,明确地理解,因此计算,这些高维变量的算术可能是一种新的加密方案的基础,不完全是离散对数模型,但可能是更抗量子模型使用同源。除了这种基本的数学工作,还有一些问题涉及到确保电子支付和电子健康等交易的安全性和隐私性的算法。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Murty, Vijayakumar其他文献
Murty, Vijayakumar的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Murty, Vijayakumar', 18)}}的其他基金
Arithmetic Algebraic Geometry
算术代数几何
- 批准号:
RGPIN-2018-06094 - 财政年份:2021
- 资助金额:
$ 2.91万 - 项目类别:
Discovery Grants Program - Individual
Mathematics for Public Health (MfPH)
公共卫生数学(MfPH)
- 批准号:
560523-2020 - 财政年份:2021
- 资助金额:
$ 2.91万 - 项目类别:
Emerging Infectious Diseases Modelling Initiative (EIDM)
Mathematics for Public Health (MfPH)
公共卫生数学(MfPH)
- 批准号:
560523-2020 - 财政年份:2020
- 资助金额:
$ 2.91万 - 项目类别:
Emerging Infectious Diseases Modelling Initiative (EIDM)
Arithmetic Algebraic Geometry
算术代数几何
- 批准号:
RGPIN-2018-06094 - 财政年份:2020
- 资助金额:
$ 2.91万 - 项目类别:
Discovery Grants Program - Individual
Arithmetic Algebraic Geometry
算术代数几何
- 批准号:
RGPIN-2018-06094 - 财政年份:2019
- 资助金额:
$ 2.91万 - 项目类别:
Discovery Grants Program - Individual
Arithmetic Algebraic Geometry
算术代数几何
- 批准号:
RGPIN-2018-06094 - 财政年份:2018
- 资助金额:
$ 2.91万 - 项目类别:
Discovery Grants Program - Individual
Arithmetic Algebraic Geometry
算术代数几何
- 批准号:
44342-2013 - 财政年份:2017
- 资助金额:
$ 2.91万 - 项目类别:
Discovery Grants Program - Individual
Arithmetic Algebraic Geometry
算术代数几何
- 批准号:
44342-2013 - 财政年份:2016
- 资助金额:
$ 2.91万 - 项目类别:
Discovery Grants Program - Individual
Arithmetic Algebraic Geometry
算术代数几何
- 批准号:
44342-2013 - 财政年份:2015
- 资助金额:
$ 2.91万 - 项目类别:
Discovery Grants Program - Individual
Revokeable access to content
可撤销的内容访问权限
- 批准号:
485841-2015 - 财政年份:2015
- 资助金额:
$ 2.91万 - 项目类别:
Engage Grants Program
相似国自然基金
同伦和Hodge理论的方法在Algebraic Cycle中的应用
- 批准号:11171234
- 批准年份:2011
- 资助金额:40.0 万元
- 项目类别:面上项目
相似海外基金
Conference on Arithmetic Geometry and Algebraic Groups
算术几何与代数群会议
- 批准号:
2305231 - 财政年份:2023
- 资助金额:
$ 2.91万 - 项目类别:
Standard Grant
Arithmetic geometry and algebraic number theory
算术几何与代数数论
- 批准号:
CRC-2017-00306 - 财政年份:2022
- 资助金额:
$ 2.91万 - 项目类别:
Canada Research Chairs
Anabelian methods in arithmetic and algebraic geometry
算术和代数几何中的阿纳贝尔方法
- 批准号:
RGPIN-2022-03116 - 财政年份:2022
- 资助金额:
$ 2.91万 - 项目类别:
Discovery Grants Program - Individual
Derived categories in arithmetic and algebraic geometry
算术和代数几何的派生范畴
- 批准号:
DGECR-2022-00444 - 财政年份:2022
- 资助金额:
$ 2.91万 - 项目类别:
Discovery Launch Supplement
Derived categories in arithmetic and algebraic geometry
算术和代数几何的派生范畴
- 批准号:
RGPIN-2022-03461 - 财政年份:2022
- 资助金额:
$ 2.91万 - 项目类别:
Discovery Grants Program - Individual
Algebraic and Arithmetic Geometry via Stacks
通过堆栈学习代数和算术几何
- 批准号:
RGPIN-2022-02980 - 财政年份:2022
- 资助金额:
$ 2.91万 - 项目类别:
Discovery Grants Program - Individual
Anabelian methods in arithmetic and algebraic geometry
算术和代数几何中的阿纳贝尔方法
- 批准号:
DGECR-2022-00434 - 财政年份:2022
- 资助金额:
$ 2.91万 - 项目类别:
Discovery Launch Supplement
Noncommutative Algebras and Their Interactions With Algebraic and Arithmetic Geometry
非交换代数及其与代数和算术几何的相互作用
- 批准号:
2101761 - 财政年份:2021
- 资助金额:
$ 2.91万 - 项目类别:
Standard Grant
Arithmetic Algebraic Geometry
算术代数几何
- 批准号:
RGPIN-2018-06094 - 财政年份:2021
- 资助金额:
$ 2.91万 - 项目类别:
Discovery Grants Program - Individual
Higher Dimensional Algebraic Varieties: Geometry and Arithmetic
高维代数簇:几何和算术
- 批准号:
2140781 - 财政年份:2021
- 资助金额:
$ 2.91万 - 项目类别:
Standard Grant