Model diagnostics under long memory, and for spatial data

长记忆下的模型诊断以及空间数据

基本信息

  • 批准号:
    0704130
  • 负责人:
  • 金额:
    $ 24.27万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2007
  • 资助国家:
    美国
  • 起止时间:
    2007-06-01 至 2011-05-31
  • 项目状态:
    已结题

项目摘要

A discrete time stationary stochastic process is said to have long memory if its auto-correlations tend to zero hyperbolically in the lag parameter, as the lag tends to infinity. Physical and social sciences are full of realdata examples that exhibit this behavior in the presence of conditionalheteroscedasticity and where regression functions are nonlinear and non-smooth. The first part of the proposal focuses on developing useful and optimal lack-of-fit tests for fitting a nonlinear and non-smooth parametric regression function in the presence of heteroscedastic and long memory moving average (LMMA) errors, and when designs are either non-random or LMMA. It is further proposed to construct useful and optimal tests for testing the equality of two or more regression functions against one or two sided alternatives, when the error and the covariate processes follow some LMMA models. The second part of proposal is concerned with developing robust inference for a first order quadrant autoregressive process, a process that is a unilateral autoregressive process in the plane. P.I. proposes to provide a class of minimum distance tests for fitting a parametric first order quadrant autoregressive process. In addition, assuming such a model is valid, P.I. proposes to develop asymptotically distribution free tests for fitting an error distribution. A data set is said to have long memory if an association between distant observations is slowly decaying but persistent, as the distance between observations increases. A data set observed over a period of time is calleda time series. A heteroscedastic time series is one where the conditional variability of an observation at the current time, given the past, depends on the past. Such data often arises in economics, finance, hydrology, andphysical sciences. In particular, an important example of long memory heteroscedastic time series is the volatility of spot returns. Part of the emphasis of the proposal is on developing optimal inferential procedures in a class of non-smooth non-linear heteroscedastic time series models. Practical modelling of numerous agricultural and environmental phenomenon involve spatial correlations. A useful model for analyzing spatial correlations is a unilateral autoregressive time series, also known as a first-order quadrant autoregressive process. This type of processes is especially appropriate when there is an evidence of a spatial movement over the plane in one direction, such as with environmental pollutants transported by winds or ocean currents, or with the spread of a disease. A model where certain fractional differences of a spatial time series are first-order quadrant autoregressive has been found useful in modelling the slow decay of correlations between yields in two dimensional agricultural field trials. Part of the focus of this proposal is to develop useful and robust inference procedures for the underlying parameters in these models with applications to agriculture and environmental science.
一个离散时间平稳随机过程被称为具有长记忆,如果它的自相关在滞后参数中双曲地趋于零,因为滞后趋于无穷大。物理和社会科学中有大量的真实数据例子,在存在条件异方差的情况下,以及回归函数是非线性和非光滑的情况下,这些数据都表现出这种行为。该提案的第一部分侧重于开发有用的和最佳的拟合不足测试,用于在存在异方差和长记忆移动平均(LMMA)误差的情况下拟合非线性和非光滑参数回归函数,以及当设计是非随机或LMMA时。当误差和协变量过程遵循某些LMMA模型时,本文进一步提出了构造检验两个或多个回归函数对单侧或双侧替代品的相等性的有用的和最优的检验。建议的第二部分是关于发展一阶象限自回归过程的鲁棒推理,该过程是平面上的单边自回归过程。P.I.提出了一类拟合参数一阶象限自回归过程的最小距离检验方法。此外,假设这样的模型是有效的,P. I.建议开发渐近分布自由测试拟合误差分布。如果随着观测之间的距离增加,远距离观测之间的关联缓慢衰减但持续存在,则数据集被称为具有长记忆。在一段时间内观察到的数据集被称为时间序列。异方差时间序列是指给定过去,当前时间的观测值的条件变异性取决于过去。这样的数据经常出现在经济学、金融学、水文学和物理学中。特别是,长记忆异方差时间序列的一个重要例子是现货收益率的波动性。该建议的部分重点是在一类非光滑非线性异方差时间序列模型中开发最佳推理程序。许多农业和环境现象的实际建模涉及空间相关性。分析空间相关性的一个有用模型是单边自回归时间序列,也称为一阶象限自回归过程。 当有证据表明飞机在一个方向上有空间运动时,这种类型的过程特别合适,例如风或洋流运输的环境污染物,或者疾病的传播。 空间时间序列的某些分数差是一阶象限自回归的模型已被发现在模拟二维农业田间试验中产量之间的相关性的缓慢衰减中是有用的。该建议的重点之一是为这些模型中的基本参数开发有用和强大的推理程序,并将其应用于农业和环境科学。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Hira Koul其他文献

Hira Koul的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Hira Koul', 18)}}的其他基金

Collaborative Research: Model diagnostics in regression and Tobit regression models with measurement error
合作研究:具有测量误差的回归和 Tobit 回归模型中的模型诊断
  • 批准号:
    1205271
  • 财政年份:
    2012
  • 资助金额:
    $ 24.27万
  • 项目类别:
    Continuing Grant
Inference in Heteroscedastic Nonlinear Time Series Under Long Memory With Applications to Finance
长记忆下异方差非线性时间序列的推理及其在金融中的应用
  • 批准号:
    0071619
  • 财政年份:
    2000
  • 资助金额:
    $ 24.27万
  • 项目类别:
    Continuing Grant
Mathematical Sciences: Optimal Inference in Non-Linear Regression Models with Long Range Dependent Errors and in Non-Linear Time Series
数学科学:具有长程相关误差的非线性回归模型和非线性时间序列中的最优推理
  • 批准号:
    9402904
  • 财政年份:
    1994
  • 资助金额:
    $ 24.27万
  • 项目类别:
    Standard Grant
Analysis of Censored Data, Workshop at University of Poona, Pune, India, December 1994.
审查数据分析,浦那大学研讨会,印度浦那,1994 年 12 月。
  • 批准号:
    9313731
  • 财政年份:
    1994
  • 资助金额:
    $ 24.27万
  • 项目类别:
    Standard Grant
Mathematical Sciences: Optimal Inference in Regression with Long Range Dependent Errors and in Bilinear Time Series
数学科学:长程相关误差回归和双线性时间序列中的最优推理
  • 批准号:
    9102041
  • 财政年份:
    1991
  • 资助金额:
    $ 24.27万
  • 项目类别:
    Continuing Grant
Sfc Travel Support (In Indian Currency) to Give Advanced Research Seminars in Statistics and Probability; Poona, India; July 1982 - June 1983
证监会出差支持(以印度货币)举办统计和概率高级研究研讨会;
  • 批准号:
    8211052
  • 财政年份:
    1982
  • 资助金额:
    $ 24.27万
  • 项目类别:
    Standard Grant

相似海外基金

Does treating low density malaria infections reduce malaria transmission?
治疗低密度疟疾感染是否可以减少疟疾传播?
  • 批准号:
    10574796
  • 财政年份:
    2023
  • 资助金额:
    $ 24.27万
  • 项目类别:
Validation of the Genetically Malleable Oncopig Hepatocellular carcinoma (HCC) Model for Targeted Therapeutic Development
用于靶向治疗开发的遗传可塑性 Oncopig 肝细胞癌 (HCC) 模型的验证
  • 批准号:
    10760736
  • 财政年份:
    2023
  • 资助金额:
    $ 24.27万
  • 项目类别:
Development and Validation of a Multimodal Ultrasound- Based Biomarker for Myofascial Pain
基于多模态超声的肌筋膜疼痛生物标志物的开发和验证
  • 批准号:
    10579668
  • 财政年份:
    2022
  • 资助金额:
    $ 24.27万
  • 项目类别:
Non-invasive detection of malaria parasites in vitro and in Cameroonian adults
体外和喀麦隆成年人体内疟原虫的无创检测
  • 批准号:
    10613484
  • 财政年份:
    2022
  • 资助金额:
    $ 24.27万
  • 项目类别:
Non-invasive detection of malaria parasites in vitro and in Cameroonian adults
体外和喀麦隆成年人体内疟原虫的无创检测
  • 批准号:
    10373306
  • 财政年份:
    2022
  • 资助金额:
    $ 24.27万
  • 项目类别:
Point-of-care pharmacogenomic testing to optimize isoniazid dosing for tuberculosis prevention
床旁药物基因组学测试可优化预防结核病的异烟肼剂量
  • 批准号:
    10709589
  • 财政年份:
    2022
  • 资助金额:
    $ 24.27万
  • 项目类别:
Exosomal Thomsen-Friedenreich glycoantigen as a new biomarker for lung cancer screening and early detection
外泌体 Thomsen-Friedenreich 糖抗原作为肺癌筛查和早期检测的新生物标志物
  • 批准号:
    10670439
  • 财政年份:
    2022
  • 资助金额:
    $ 24.27万
  • 项目类别:
Quantitative Language and Facial Expression Phenotyping of Chronic Pain
慢性疼痛的定量语言和面部表情表型
  • 批准号:
    10569769
  • 财政年份:
    2022
  • 资助金额:
    $ 24.27万
  • 项目类别:
Development of a molecular-level skin condition diagnostic for precision medicine
开发用于精准医学的分子级皮肤状况诊断
  • 批准号:
    10600694
  • 财政年份:
    2022
  • 资助金额:
    $ 24.27万
  • 项目类别:
Quantitative Language and Facial Expression Phenotyping of Chronic Pain
慢性疼痛的定量语言和面部表情表型
  • 批准号:
    10709614
  • 财政年份:
    2022
  • 资助金额:
    $ 24.27万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了