Vanishing viscosity in the presence of a boundary
存在边界时粘度消失
基本信息
- 批准号:0705586
- 负责人:
- 金额:$ 10.97万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2007
- 资助国家:美国
- 起止时间:2007-07-01 至 2008-09-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
The purpose of this project is to better understand the behavior of nearly inviscid fluids near a boundary. Such behavior has been of interest to engineers and physicists for at least a hundred years and has been a pressing concern of mathematicians working in fluids for at least half of that time. There is much practical knowledge about the boundary behavior, but little precise mathematical understanding. The proposal is to investigate the boundary behavior of the fluid in the limited setting of a two dimensional bounded domain, focusing on a disk, where important aspects of the analysis are simplified, but where the behavior is still physically relevant. The goal is to strengthen existing partial results concerning the boundary behavior of the fluid and to attempt to integrate the partially heuristic methods of engineers and physicists into a mathematical setting.Many fluids have reasonably low viscosity and nearly all fluids are in contact with a boundary. How is the flow of blood affected by imperfections in vessel walls? How is the lift of a wing determined by its shape? How do a submarine's propellers induce turbulence when running at certain speeds? In all of these problems and many more the flow of the fluid can be constrained by the interaction of the fluid with the boundary in ways that are currently only partially understood. Almost any progress that can be made in the understanding of this interaction would ultimately be beneficial in addressing all of these problems, whether by giving better control on the error bounds in numerical computations, by giving a qualitative understanding of the interaction, or even by demonstrating that the boundary behavior is even more complex than is currently believed.
这个项目的目的是为了更好地理解边界附近几乎无粘性流体的行为。工程师和物理学家对这种行为感兴趣至少有一百年了,而在其中至少一半的时间里,研究流体的数学家一直迫切关注这种行为。关于边界行为有很多实用的知识,但很少有精确的数学理解。该建议是研究流体的边界行为在有限设置的二维有界域,集中在一个磁盘,其中的重要方面的分析是简化的,但在那里的行为仍然是物理相关。目标是加强现有的关于流体边界行为的部分结果,并试图将工程师和物理学家的部分启发式方法整合到数学设置中。许多流体具有相当低的粘度,而且几乎所有流体都与边界接触。血管壁缺陷对血流有何影响?机翼的升力是如何由它的形状决定的?当潜艇以一定速度运行时,螺旋桨是如何引起湍流的?在所有这些问题以及更多的问题中,流体的流动可能受到流体与边界的相互作用的限制,而这些限制目前只被部分地理解。在理解这种相互作用方面取得的几乎任何进展最终都将有利于解决所有这些问题,无论是通过更好地控制数值计算中的误差界限,还是通过对相互作用进行定性理解,甚至通过证明边界行为比目前认为的还要复杂。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
James Kelliher其他文献
James Kelliher的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('James Kelliher', 18)}}的其他基金
Fluid flow in the presence of boundaries and singularities
存在边界和奇点的流体流动
- 批准号:
1212141 - 财政年份:2012
- 资助金额:
$ 10.97万 - 项目类别:
Standard Grant
Collaborative Research: Analysis of incompressible high Reynolds number flows
合作研究:不可压缩高雷诺数流动分析
- 批准号:
1009545 - 财政年份:2010
- 资助金额:
$ 10.97万 - 项目类别:
Standard Grant
Vanishing viscosity in the presence of a boundary
存在边界时粘度消失
- 批准号:
0842408 - 财政年份:2008
- 资助金额:
$ 10.97万 - 项目类别:
Standard Grant
相似海外基金
Investigating Effects of Transient and Non-Newtonian Mantle Viscosity on Glacial Isostatic Adjustment Process and their Implications for GPS Observations in Antarctica
研究瞬态和非牛顿地幔粘度对冰川均衡调整过程的影响及其对南极 GPS 观测的影响
- 批准号:
2333940 - 财政年份:2024
- 资助金额:
$ 10.97万 - 项目类别:
Standard Grant
Comprehensive study of anomalous behaviors of viscosity, elasticity, and density of silicate magmas under pressure
硅酸盐岩浆受压黏度、弹性、密度异常行为综合研究
- 批准号:
23KK0065 - 财政年份:2023
- 资助金额:
$ 10.97万 - 项目类别:
Fund for the Promotion of Joint International Research (International Collaborative Research)
Toward applications of the crystalline mean curvature flow
晶体平均曲率流的应用
- 批准号:
23K03212 - 财政年份:2023
- 资助金额:
$ 10.97万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Novel, Targeted Method for Bacteriophage Purification
噬菌体纯化的新型靶向方法
- 批准号:
10698983 - 财政年份:2023
- 资助金额:
$ 10.97万 - 项目类别:
Novel Polymer-antibody Conjugates as Long-acting Therapeutics for Ocular Diseases
新型聚合物-抗体缀合物作为眼部疾病的长效治疗药物
- 批准号:
10760186 - 财政年份:2023
- 资助金额:
$ 10.97万 - 项目类别:
High-throughput injectability screening of high concentration protein formulations by microfluidic quartz resonators
通过微流控石英谐振器对高浓度蛋白质制剂进行高通量可注射性筛选
- 批准号:
10760592 - 财政年份:2023
- 资助金额:
$ 10.97万 - 项目类别:
Deciphering the mechanics of microtubule networks in mitosis
破译有丝分裂中微管网络的机制
- 批准号:
10637323 - 财政年份:2023
- 资助金额:
$ 10.97万 - 项目类别:
High subzero preservation of liver for transplantation
移植用肝脏的高度低温保存
- 批准号:
10815970 - 财政年份:2023
- 资助金额:
$ 10.97万 - 项目类别:
Evolutionary adaptation of dense microbial populations to range expansion
密集微生物种群对范围扩张的进化适应
- 批准号:
10751361 - 财政年份:2023
- 资助金额:
$ 10.97万 - 项目类别: