Investigating Effects of Transient and Non-Newtonian Mantle Viscosity on Glacial Isostatic Adjustment Process and their Implications for GPS Observations in Antarctica

研究瞬态和非牛顿地幔粘度对冰川均衡调整过程的影响及其对南极 GPS 观测的影响

基本信息

  • 批准号:
    2333940
  • 负责人:
  • 金额:
    $ 37.76万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2024
  • 资助国家:
    美国
  • 起止时间:
    2024-01-01 至 2026-12-31
  • 项目状态:
    未结题

项目摘要

Satellite observations of Earth’s surface gravity and elevation changes indicate rapid melting of ice sheets in recent decades in northern Antarctica Peninsula and Amundsen Sea Embayment of West Antarctica. This rapid melting may lead to significant global sea level rise which is a major societal concern. Measurements from the Global Positioning System (GPS) show rapid land uplift in these regions as the ice sheets melt. When an ice sheet melts, the melt water flows to oceans, causing global sea level to rise. However, the sea level change at a given geographic location is also influenced by two other factors associated with the ice melting process: 1) the vertical motion of the land and 2) gravitational attraction. The vertical motion of the land is caused by the change of pressure force on the surface of the solid Earth. For example, the removal of ice mass reduces the pressure force on the land, leading to uplift of the land below the ice sheet, while the addition of water in oceans increases the pressure force on the seafloor, causing it to subside. The sea level always follows the equipotential surface of the gravity which changes as the mass on the Earth’s surface (e.g., the ice and water) or/and in its interiors (e.g., at the crust-mantle boundary) is redistributed. Additionally, the vertical motion of the land below an ice sheet has important effects on the evolution and stability of the ice sheet and may determine whether the ice sheet will rapidly collapse or gradually stabilize. The main goal of this project is to build an accurate and efficient computer model to study the displacement and deformation of the Antarctic crust and mantle in response to recent ice melting. The project will significantly improve existing and publicly available computer code, CitcomSVE. The horizontal and vertical components of the Earth’s surface displacement depends on mantle viscosity and elastic properties of the Earth. Although seismic imaging studies demonstrate that the Antarctica mantle is heterogeneous, most studies on the ice-melting induced deformation in Antarctica have assumed that mantle viscosity and elastic properties only vary with the depth due to computational limitations. In this project, the new computational method in CitcomSVE avoids such assumptions and makes it possible to include realistic 3-D mantle viscosity and elastic properties in computing the Antarctica crustal and mantle displacement. This project will interpret the GPS measurements of the surface displacements in northern Antarctica Peninsula and Amundsen Sea Embayment of West Antarctica and use the observations to place constraints on mantle viscosity and deformation mechanisms. The project will also seek to predict the future land displacement Antarctica, which will lead to a better understand of Antarctica ice sheets. Finally, the project has direct implications for the study of global sea level change and the dynamics of the Greenland ice sheet. Technical DescriptionGlacial isostatic adjustment (GIA) is important for understanding not only fundamental science questions including mantle viscosity, mantle convection and lithospheric deformation but also societally important questions of global sea-level change, polar ice melting, climate change, and groundwater hydrology. Studies of rock deformation in laboratory experiments, post-seismic deformation, and mantle dynamics indicate that mantle viscosity is temperature- and stress-dependent. Although the effects of stress-dependent (i.e., non-Newtonian) viscosity and transient creep rheology on GIA process have been studied, observational evidence remains elusive. There has been significant ice mass loss in recent decades in northern Antarctica Peninsula (NAP) and Amundsen Sea Embayment (ASE) of West Antarctica. The ice mass loss has caused rapid bedrock uplift as measured by GPS techniques which require surprisingly small upper mantle viscosity of ~1018 Pas. The rapid uplifts may have important feedback effects on ongoing ice melting because of their influence on grounding line migration, and the inferred small viscosity may have implications for mantle rheology and deformation on decadal time scales. The main objective of the project is to test hypotheses that the GPS observations in NAP and ASE regions are controlled by 3-D non-Newtonian or/and transient creep viscosity by developing new GIA modeling capability based on finite element package CitcomSVE. The project will carry out the following three tasks: Task 1 is to build GIA models for the NAP and ASE regions to examine the effects of 3-D temperature-dependent mantle viscosity on the surface displacements and to test hypothesis that the 3-D mantle viscosity improves the fit to the GPS observations. Task 2 is to test the hypothesis that non-Newtonian or/and transient creep rheology controls GIA process on decadal time scales by computing GIA models and comparing model predictions with GPS observations for the NAP and ASE regions. Task 3 is to implement transient creep (i.e., Burgers model) rheology into finite element package CitcomSVE for modeling the GIA process on global and regional scales and to make the package publicly available to the scientific community. The project will develop the first numerical GIA model with Burgers transient rheology and use the models to examine the effects of 3-D temperature-dependent viscosity, non-Newtonian viscosity and transient rheology on GIA-induced surface displacements in Antarctica. The project will model the unique GPS observations of unusually large displacement rates in the NAP and ASE regions to place constraints on mantle rheology and to distinguish between 3-D temperature-dependent, non-Newtonian and transient mantle viscosity. The project will expand the capability of the publicly available software package CitcomSVE for modeling viscoelastic deformation and tidal deformation on global and regional scales. The project will advance our understanding in lithospheric deformation and mantle rheology on decadal time scales, which helps predict grounding line migration and understand ice sheet stability in West Antarctica. The project will strengthen the open science practice by improving the publicly available code CitcomSVE at github.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
对地球表面重力和海拔变化的卫星观测表明,近几十年来,南极半岛北部和南极洲西部阿蒙森海湾的冰盖迅速融化。这种快速融化可能导致全球海平面显著上升,这是一个主要的社会问题。全球定位系统(GPS)的测量显示,随着冰盖融化,这些地区的陆地迅速隆起。当冰盖融化时,融化的水流入海洋,导致全球海平面上升。然而,某一地理位置的海平面变化还受到与冰融化过程有关的另外两个因素的影响:1)陆地的垂直运动和2)重力吸引。陆地的垂直运动是由固体地球表面压力的变化引起的。例如,冰块的消失减少了对陆地的压力,导致冰盖下的陆地隆起,而海洋中水的增加增加了对海底的压力,使其下沉。海平面总是跟随重力等势面而变化,重力等势面随着地球表面(如冰和水)或地球内部(如地壳-地幔边界)质量的重新分布而变化。此外,冰盖下陆地的垂直运动对冰盖的演变和稳定有重要影响,并可能决定冰盖是迅速崩塌还是逐渐稳定下来。该项目的主要目标是建立一个准确、高效的计算机模型,以研究近年来冰融化对南极地壳和地幔位移和变形的响应。该项目将显著改进现有的和公开的计算机代码CitcomSVE。地球表面位移的水平和垂直分量取决于地幔粘度和地球的弹性特性。虽然地震成像研究表明南极洲地幔是非均匀的,但由于计算的限制,大多数关于南极洲融冰变形的研究都假设地幔粘度和弹性性质只随深度而变化。在本项目中,CitcomSVE的新计算方法避免了这样的假设,使得在计算南极地壳和地幔位移时考虑真实的三维地幔粘度和弹性特性成为可能。本项目将对南极半岛北部和南极洲西部阿蒙森海海湾的地表位移的GPS测量结果进行解释,并利用这些观测结果对地幔粘度和变形机制进行约束。该项目还将试图预测南极洲未来的陆地位移,这将有助于更好地了解南极洲冰盖。最后,该项目对全球海平面变化和格陵兰冰盖动态的研究具有直接意义。冰川均衡调整(GIA)不仅对理解包括地幔粘度、地幔对流和岩石圈变形在内的基础科学问题很重要,而且对理解全球海平面变化、极地冰融化、气候变化和地下水水文等重要社会问题也很重要。对岩石变形、地震后变形和地幔动力学的研究表明,地幔粘度与温度和应力有关。虽然已经研究了应力依赖性(即非牛顿)粘度和瞬态蠕变流变对GIA过程的影响,但观测证据仍然难以捉摸。近几十年来,南极半岛北部(NAP)和南极洲西部阿蒙森海湾(ASE)的冰量损失显著。通过GPS技术测量,冰的质量损失导致了基岩的快速隆起,这需要非常小的上地幔粘度~1018 Pas。快速隆升可能对正在进行的冰融化具有重要的反馈作用,因为它们对接地线迁移有影响,推断的小粘度可能对年代际时间尺度上的地幔流变和变形有影响。该项目的主要目标是通过开发基于有限元软件包CitcomSVE的新的GIA建模能力,验证NAP和ASE区域的GPS观测结果受三维非牛顿或/和瞬态蠕变粘度控制的假设。该项目将执行以下三个任务:任务1是为NAP和ASE区域建立GIA模型,以检查三维温度依赖的地幔粘度对地表位移的影响,并验证三维地幔粘度提高了与GPS观测结果拟合的假设。任务2是通过计算GIA模型,并将模型预测与NAP和ASE地区的GPS观测结果进行比较,验证非牛顿或/和瞬态蠕变流变学在年代际尺度上控制GIA过程的假设。任务3是将瞬态蠕变(即Burgers模型)流变学实现到有限元包CitcomSVE中,用于在全球和区域尺度上对GIA过程进行建模,并将该包公开提供给科学界。该项目将开发第一个具有Burgers瞬态流变的数值GIA模型,并使用该模型来检查三维温度依赖粘度、非牛顿粘度和瞬态流变对南极洲GIA诱发的地表位移的影响。该项目将对NAP和ASE区域异常大位移率的独特GPS观测结果进行建模,以限制地幔流变学,并区分三维温度依赖性、非牛顿性和瞬态地幔粘度。该项目将扩大公开可用的软件包CitcomSVE的能力,用于在全球和区域尺度上模拟粘弹性变形和潮汐变形。该项目将推进我们对岩石圈变形和地幔流变学在年代际尺度上的认识,有助于预测南极西部接地线的迁移和了解冰盖的稳定性。该项目将通过改进github上的公开代码CitcomSVE来加强开放科学实践。该奖项反映了美国国家科学基金会的法定使命,并通过使用基金会的知识价值和更广泛的影响审查标准进行评估,被认为值得支持。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Shijie Zhong其他文献

The effects of laterally varying icy shell structure on the tidal response of Ganymede and Europa
横向变化的冰壳结构对木卫三和木卫二潮汐响应的影响
Goal-Oriented Bayesian Optimal Experimental Design for Nonlinear Models using Markov Chain Monte Carlo
使用马尔可夫链蒙特卡罗的非线性模型的面向目标贝叶斯最优实验设计
  • DOI:
  • 发表时间:
    2024
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Shijie Zhong;Wanggang Shen;Tommie A. Catanach;Xun Huan
  • 通讯作者:
    Xun Huan
Separation and Purification of Quinolone Alkaloids from the Chinese Herbal Medicine Evodia rutaecarpa (Juss.) Benth by High Performance Counter-Current Chromatography
高效逆流色谱法分离纯化中药吴茱萸中喹诺酮类生物碱
  • DOI:
  • 发表时间:
    2011
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Shijie Zhong;Hao;A. Peng;Jie Shi;Shichao He;Shucai Li;Xia Ye;Ming;Li
  • 通讯作者:
    Li
The relationship between gravity anomalies and topography in the Pacific Ocean and its implications for flexural isostasy, mantle viscosity and dynamics
太平洋重力异常与地形之间的关系及其对挠曲均衡、地幔粘度和动力学的影响
  • DOI:
    10.1016/j.epsl.2025.119246
  • 发表时间:
    2025-04-01
  • 期刊:
  • 影响因子:
    5.100
  • 作者:
    An Yang;A.B. Watts;Shijie Zhong
  • 通讯作者:
    Shijie Zhong
Influence of thermochemical piles on topography at Earth's core–mantle boundary
  • DOI:
    10.1016/j.epsl.2007.07.015
  • 发表时间:
    2007-09-30
  • 期刊:
  • 影响因子:
  • 作者:
    Teresa Mae Lassak;Allen K. McNamara;Shijie Zhong
  • 通讯作者:
    Shijie Zhong

Shijie Zhong的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Shijie Zhong', 18)}}的其他基金

Constraining Frictional and Low-Temperature Plastic Rheology of Oceanic Lithosphere by Modeling Observations of Load-Induced Deformation from the Hawaiian Islands to Japan Trench
通过模拟从夏威夷群岛到日本海沟的荷载引起的变形观测来约束海洋岩石圈的摩擦和低温塑性流变
  • 批准号:
    1940026
  • 财政年份:
    2019
  • 资助金额:
    $ 37.76万
  • 项目类别:
    Standard Grant
Contraining the large-scale dynamics and structure of the lower mantle using observations of the geoid, dynamic topography and plate tectonics
利用大地水准面、动态地形和板块构造的观测来约束下地幔的大尺度动力学和结构
  • 批准号:
    1645245
  • 财政年份:
    2017
  • 资助金额:
    $ 37.76万
  • 项目类别:
    Continuing Grant
Constraining Mantle Rheology at Lithospheric Conditions by Modeling Seamount Induced Deformation and Gravity Anomalies
通过模拟海山引起的变形和重力异常来约束岩石圈条件下的地幔流变
  • 批准号:
    1114168
  • 财政年份:
    2011
  • 资助金额:
    $ 37.76万
  • 项目类别:
    Standard Grant
Investigating the consequences of Supercontinent Pangea assembly and breakup on the time evolution of large-scale mantle thermochemical structures and magmatism
研究超大陆盘古大陆的组装和破碎对大尺度地幔热化学结构和岩浆作用时间演化的影响
  • 批准号:
    1015669
  • 财政年份:
    2010
  • 资助金额:
    $ 37.76万
  • 项目类别:
    Continuing Grant
CSEDI Collaborative Research: Neutrino Geophysics: collaboration between geology and particle physics
CSEDI 合作研究:中微子地球物理学:地质学和粒子物理学之间的合作
  • 批准号:
    0855712
  • 财政年份:
    2009
  • 资助金额:
    $ 37.76万
  • 项目类别:
    Continuing Grant
Collaborative Research: Understanding the Dynamics of the Earth: High resolution mantle convection simulation on petascale computers
合作研究:了解地球动力学:千万亿级计算机上的高分辨率地幔对流模拟
  • 批准号:
    0749045
  • 财政年份:
    2007
  • 资助金额:
    $ 37.76万
  • 项目类别:
    Continuing Grant
The Formation of Long-wavelength Mantle Structure and Its Relationship to Supercontinent Cycles and True Polar Wander
长波长地幔结构的形成及其与超大陆旋回和真极地漂移的关系
  • 批准号:
    0711366
  • 财政年份:
    2007
  • 资助金额:
    $ 37.76万
  • 项目类别:
    Continuing Grant
Acquisition of a PC Cluster for Geophysical Modeling
获取用于地球物理建模的 PC 集群
  • 批准号:
    0650957
  • 财政年份:
    2007
  • 资助金额:
    $ 37.76万
  • 项目类别:
    Standard Grant
Constraining Thermo-Chemical Mantle Convection from Observations of Mantle Plumes and Upper Mantle Temperature
从地幔柱和上地幔温度的观测来约束地幔热化学对流
  • 批准号:
    0538255
  • 财政年份:
    2006
  • 资助金额:
    $ 37.76万
  • 项目类别:
    Standard Grant

相似国自然基金

Dynamic Credit Rating with Feedback Effects
  • 批准号:
  • 批准年份:
    2024
  • 资助金额:
    万元
  • 项目类别:
    外国学者研究基金项目
水环境中新兴污染物类抗生素效应(Like-Antibiotic Effects,L-AE)作用机制研究
  • 批准号:
    21477024
  • 批准年份:
    2014
  • 资助金额:
    86.0 万元
  • 项目类别:
    面上项目

相似海外基金

Collaborative Research: Timescale-Dependent Effects of Transient Dynamics in Plant-Pollinator Networks
合作研究:植物传粉者网络中瞬态动力学的时间尺度依赖性效应
  • 批准号:
    2129758
  • 财政年份:
    2022
  • 资助金额:
    $ 37.76万
  • 项目类别:
    Standard Grant
Competing Rates in Mixing Sensitive Processes: design fundamentals for meso-scale and transient effects
混合敏感过程中的竞争速率:中观尺度和瞬态效应的设计基础
  • 批准号:
    RGPIN-2018-04942
  • 财政年份:
    2022
  • 资助金额:
    $ 37.76万
  • 项目类别:
    Discovery Grants Program - Individual
Collaborative Research: Timescale-Dependent Effects of Transient Dynamics in Plant-Pollinator Networks
合作研究:植物传粉者网络中瞬态动力学的时间尺度依赖性效应
  • 批准号:
    2129757
  • 财政年份:
    2022
  • 资助金额:
    $ 37.76万
  • 项目类别:
    Standard Grant
Collaborative Research: ISS: Revealing interfacial stability, thermal transport and transient effects in film evaporation in microgravity
合作研究:ISS:揭示微重力下薄膜蒸发的界面稳定性、热传输和瞬态效应
  • 批准号:
    2224418
  • 财政年份:
    2022
  • 资助金额:
    $ 37.76万
  • 项目类别:
    Standard Grant
Precision Metrology Using Coherent Transient Effects and Cold Atom Interferometry Based On Homebuilt, Auto-locked Laser Systems
使用基于自制自动锁定激光系统的相干瞬态效应和冷原子干涉测量的精密计量
  • 批准号:
    RGPIN-2020-06114
  • 财政年份:
    2022
  • 资助金额:
    $ 37.76万
  • 项目类别:
    Discovery Grants Program - Individual
Collaborative Research: Timescale-Dependent Effects of Transient Dynamics in Plant-Pollinator Networks
合作研究:植物传粉者网络中瞬态动力学的时间尺度依赖性效应
  • 批准号:
    2129759
  • 财政年份:
    2022
  • 资助金额:
    $ 37.76万
  • 项目类别:
    Standard Grant
Collaborative Research: ISS: Revealing interfacial stability, thermal transport and transient effects in film evaporation in microgravity
合作研究:ISS:揭示微重力下薄膜蒸发的界面稳定性、热传输和瞬态效应
  • 批准号:
    2224417
  • 财政年份:
    2022
  • 资助金额:
    $ 37.76万
  • 项目类别:
    Standard Grant
Brush seal Resistance to Inlet Swirl and Transient Loading Effects (BRISTLE)
刷式密封对入口涡流和瞬态负载效应的抵抗力(BRISTLE)
  • 批准号:
    EP/W005662/1
  • 财政年份:
    2022
  • 资助金额:
    $ 37.76万
  • 项目类别:
    Research Grant
Thermal transient effects in fusion front wall/breeder blanket components
聚变前壁/增殖毯组件中的热瞬态效应
  • 批准号:
    2764904
  • 财政年份:
    2022
  • 资助金额:
    $ 37.76万
  • 项目类别:
    Studentship
Collaborative Research: Assessment of Building Resiliency in Tornadoes Considering Transient Internal Pressure Effects
合作研究:考虑瞬态内压影响的龙卷风建筑弹性评估
  • 批准号:
    2053494
  • 财政年份:
    2021
  • 资助金额:
    $ 37.76万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了