New Statistical Modeling Procedures for Object Oriented Data Analysis (OODA)
面向对象数据分析 (OODA) 的新统计建模程序
基本信息
- 批准号:0706761
- 负责人:
- 金额:$ 14.99万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2007
- 资助国家:美国
- 起止时间:2007-06-01 至 2011-05-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
The objectives of this research are to develop novel statistical models, theory, algorithms and applications geared towards the analysis of complex object oriented data, including tree-structured objects and random graphs. The research not only introduces a number of innovative techniques, but also provides various new and deep insights into statistical foundations, e.g., modeling procedure for complex data objects. This research significantly enhances the toolkit available for the analysis of object oriented data. In particular, three inter-related topics are proposed for investigation. First, the investigator develops a careful axiomatic structure for understanding tree-structured objects, which circumvents the need to define linear operations. Moreover, the investigator studies how to carry out statistical inference, based on the metric induced probability measures, in tree space. Nonparametric and semiparametric modeling procedures are also proposed in the space of trees and graphs. Second, a model selection procedure is studied using Hellinger distance. The asymptotic behavior of the estimated Hellinger discrepancy, and testing the adequacy of the approximation are considered. The performance of the proposed model selection procedure is examined through its application to the microarray gene expression data. Third, the investigator develops new techniques for analyzing data collected on manifolds. Manifold data, such as data collected along a river in an ecological study, and data gathered over a surface, have become popular in many scientific fields. New statistical methodology to extract useful features from manifold data is needed. Here, a geodesic low-rank thin plate splines method is under investigation.The research project lays out a well-grounded and comprehensive framework for analysis of object oriented data. It greatly enhances the research on object oriented data analysis by developing interdisciplinary research including bioinformatics, computer science, neuroscience, mathematics and statistics. The research on tree-structured objects can significantly benefit society by developing new techniques in image analysis and improving medical diagnoses. The investigator integrates research and education by working closely with both undergraduate and graduate students, especially underrepresented groups, from various fields. In addition, the results are to be disseminated through presentations, tutorials and conferences and via internet.
本研究的目标是开发新的统计模型、理论、算法和应用程序,以分析复杂的面向对象的数据,包括树状结构的对象和随机图。该研究不仅引入了许多创新技术,而且为统计基础提供了各种新的和深刻的见解,例如复杂数据对象的建模过程。这项研究显著增强了用于分析面向对象数据的工具包。特别提出了三个相互关联的主题进行研究。首先,研究者为理解树状结构的对象开发了一个谨慎的公理结构,这规避了定义线性操作的需要。此外,研究者还研究了如何在树空间中基于度量诱导概率测度进行统计推断。在树和图的空间中提出了非参数和半参数的建模方法。其次,研究了基于海灵格距离的模型选择过程。考虑了估计的Hellinger差异的渐近性,并检验了近似的充分性。所提出的模型选择程序的性能通过其应用于微阵列基因表达数据进行了检验。第三,研究者开发了新的技术来分析在流形上收集的数据。多种数据,如在生态研究中沿着河流收集的数据,以及在地表收集的数据,在许多科学领域都很受欢迎。需要新的统计方法从流形数据中提取有用的特征。本文研究了一种测地线低阶薄板样条法。该研究项目为分析面向对象的数据提供了一个基础良好且全面的框架。它通过发展生物信息学、计算机科学、神经科学、数学和统计学等跨学科研究,极大地促进了面向对象数据分析的研究。对树状结构物体的研究可以通过开发图像分析新技术和改进医学诊断来显著地造福社会。研究者通过与来自不同领域的本科生和研究生,特别是代表性不足的群体密切合作,将研究和教育结合起来。此外,研究结果将通过演讲、教程和会议以及互联网传播。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Haonan Wang其他文献
Implications of hydrogen peroxide on bromate depression during seawater ozonation
过氧化氢对海水臭氧化过程中溴酸盐抑制的影响
- DOI:
- 发表时间:
2021 - 期刊:
- 影响因子:8.8
- 作者:
Yixuan Yu;Yingping Zhao;Haonan Wang;Ping Tao;Xinmin Zhang;Mihua Shao;Tianjun Sun - 通讯作者:
Tianjun Sun
Distance control of virtual sound source based on switching electro-dynamic and parametric loudspeaker arrays
基于切换电动参量扬声器阵列的虚拟声源距离控制
- DOI:
- 发表时间:
2022 - 期刊:
- 影响因子:0
- 作者:
Ayano Hirose;Haonan Wang;Masato Nakayama;and Takanobu Nishiura - 通讯作者:
and Takanobu Nishiura
Prediction of the seismic behavior of concrete beams strengthened with aluminum alloy bars and/or basalt fiber‐reinforced polymer bars
用铝合金棒和/或玄武岩纤维增强聚合物棒加固的混凝土梁的抗震性能预测
- DOI:
10.1002/tal.1911 - 发表时间:
2021-12 - 期刊:
- 影响因子:0
- 作者:
Guohua Xing;Haonan Wang;Zhaoqun Chang;Kaize Ma - 通讯作者:
Kaize Ma
Effects of measurement error on the strength of concentration-response relationships in aquatic toxicology
测量误差对水生毒理学中浓度-反应关系强度的影响
- DOI:
10.1007/s10646-009-0325-2 - 发表时间:
2009 - 期刊:
- 影响因子:2.7
- 作者:
D. Sonderegger;Haonan Wang;Yao Huang;W. Clements - 通讯作者:
W. Clements
Cost-benefit analysis of central and local voltage control provided by distributed generators in MV networks
中压网络中分布式发电机提供的中央和本地电压控制的成本效益分析
- DOI:
10.1109/ptc.2013.6652333 - 发表时间:
2013 - 期刊:
- 影响因子:0
- 作者:
B. Idlbi;K. Diwold;T. Stetz;Haonan Wang;M. Braun - 通讯作者:
M. Braun
Haonan Wang的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Haonan Wang', 18)}}的其他基金
Development of Statistical Fault Detection Algorithms for Modern Power Grid Networks
现代电网统计故障检测算法的开发
- 批准号:
1923142 - 财政年份:2019
- 资助金额:
$ 14.99万 - 项目类别:
Standard Grant
Collaborative Research: Novel and Unified Statistical Learning Procedures for Massive Dynamic Multiple-Input, Multiple-Output Networks
协作研究:大规模动态多输入多输出网络的新颖且统一的统计学习程序
- 批准号:
1521746 - 财政年份:2015
- 资助金额:
$ 14.99万 - 项目类别:
Continuing Grant
Exploration, Modeling and Inference for Complex Data Objects
复杂数据对象的探索、建模和推理
- 批准号:
1106975 - 财政年份:2011
- 资助金额:
$ 14.99万 - 项目类别:
Standard Grant
Collaborative Research: Tree Structured Object Oriented Data Analysis
协作研究:树结构面向对象数据分析
- 批准号:
0854903 - 财政年份:2009
- 资助金额:
$ 14.99万 - 项目类别:
Standard Grant
相似海外基金
New statistical methods and software for modeling complex multivariate survival data with large-scale covariates
用于对具有大规模协变量的复杂多变量生存数据进行建模的新统计方法和软件
- 批准号:
10631139 - 财政年份:2022
- 资助金额:
$ 14.99万 - 项目类别:
New statistical methods and software for modeling complex multivariate survival data with large-scale covariates
用于对具有大规模协变量的复杂多变量生存数据进行建模的新统计方法和软件
- 批准号:
10453875 - 财政年份:2022
- 资助金额:
$ 14.99万 - 项目类别:
A New Analytic Approach to Time-series of Collective Motion with Integrated Statistical and Mathematical Modeling Strategy
综合统计和数学建模策略的集体运动时间序列的新分析方法
- 批准号:
21K11789 - 财政年份:2021
- 资助金额:
$ 14.99万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Statistical modeling of highly-resolved phylogeography based on molecular data of new generation
基于新一代分子数据的高分辨率系统发育地理学统计建模
- 批准号:
16H02788 - 财政年份:2016
- 资助金额:
$ 14.99万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Analysis of fishing efficiency by new statistical modeling: development of methods, application of pelagic fish and marine species near Kagoshima Bay
通过新统计模型分析捕捞效率:方法开发、鹿儿岛湾附近中上层鱼类和海洋物种的应用
- 批准号:
25450278 - 财政年份:2013
- 资助金额:
$ 14.99万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Modeling Breast Cancer Recurrence Using New Statistical Methods for Semi-Markov P
使用半马尔可夫 P 的新统计方法模拟乳腺癌复发
- 批准号:
8154116 - 财政年份:2011
- 资助金额:
$ 14.99万 - 项目类别:
RUI - New Statistical Methods for Modeling 3-Dimensional Rotations with Advances in the Study of Human Motion
RUI - 随着人体运动研究的进展,建模 3 维旋转的新统计方法
- 批准号:
1104409 - 财政年份:2011
- 资助金额:
$ 14.99万 - 项目类别:
Standard Grant
Modeling Breast Cancer Recurrence Using New Statistical Methods for Semi-Markov P
使用半马尔可夫 P 的新统计方法模拟乳腺癌复发
- 批准号:
8326596 - 财政年份:2011
- 资助金额:
$ 14.99万 - 项目类别:
Modeling Breast Cancer Recurrence Using New Statistical Methods for Semi-Markov P
使用半马尔可夫 P 的新统计方法模拟乳腺癌复发
- 批准号:
8517629 - 财政年份:2011
- 资助金额:
$ 14.99万 - 项目类别:
A new approach of statistical modeling and analysis of massive spatial data sets
海量空间数据集统计建模与分析的新方法
- 批准号:
1007618 - 财政年份:2010
- 资助金额:
$ 14.99万 - 项目类别:
Continuing Grant