Collaborative Research: Novel and Unified Statistical Learning Procedures for Massive Dynamic Multiple-Input, Multiple-Output Networks

协作研究:大规模动态多输入多输出网络的新颖且统一的统计学习程序

基本信息

  • 批准号:
    1521746
  • 负责人:
  • 金额:
    $ 5.61万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2015
  • 资助国家:
    美国
  • 起止时间:
    2015-09-01 至 2018-08-31
  • 项目状态:
    已结题

项目摘要

This project is to develop an innovative, unified, and flexible methodology to model the input-output transformations in massive multiple-input, multiple-output (MIMO) networks. With the ability of modern technology to gather large volume of high-dimensional and inhomogeneous data, traditional techniques have become inadequate or incapable of modeling the underlying MIMO systems from the data. Novel statistical approaches and methods are needed for extracting knowledge from complex, large, inhomogeneous network data sets. This project seeks to develop new modeling techniques, statistical learning tools, and computational approaches geared towards gaining knowledge arising from different aspects of network data. This development starts with a novel functional dynamic model that accounts for inherent characteristics of network data, such as node latencies, dynamics associated with network coupling, etc. Next, the investigators will develop statistical inference tools to test and identify underlying inherent network connectivity. Furthermore, the investigators will develop statistical learning techniques for network state identification and change-point detection. This project will significantly enrich the toolkit for the analysis of massive network data by providing an alternative data-driven approach. These new tools are expected to provide new solutions to the existing problems and novel and creative solutions to unsolved problems. The research topics address many fundamental problems, for example dynamic modeling, parsimonious network representation, and network learning, for complex MIMO networks when the dimensionality (e.g., the number of nodes) and the sample size grow. It will enhance understanding of existing techniques in the big data context. More importantly, advanced modeling methodology and data analytical tools will be developed with fast-to-implement algorithms, which allow researchers and practitioners to explore, understand, and eventually reverse-engineer complex networks. The investigators will interact with researchers from different fields to derive and validate hypotheses and refine the design of experiments to provide deeper insight into system internals for potential scientific discovery.
该项目旨在开发一种创新的,统一的,灵活的方法来模拟大规模多输入多输出(MIMO)网络中的输入输出转换。随着现代技术收集大量高维和非均匀数据的能力,传统技术已经不足以或无法从数据中建模底层MIMO系统。从复杂的、大型的、不均匀的网络数据集中提取知识需要新的统计方法和手段。该项目旨在开发新的建模技术,统计学习工具和计算方法,以获得来自网络数据不同方面的知识。这种发展始于一种新的功能动态模型,该模型考虑了网络数据的固有特性,例如节点延迟,与网络耦合相关的动态等。接下来,研究人员将开发统计推断工具来测试和识别潜在的固有网络连接。此外,研究人员将开发用于网络状态识别和变点检测的统计学习技术。 该项目将提供一种数据驱动的替代方法,大大丰富分析大量网络数据的工具包。这些新工具有望为现有问题提供新的解决方案,并为尚未解决的问题提供新颖和创造性的解决方案。研究主题解决了复杂MIMO网络的许多基本问题,例如动态建模,简约网络表示和网络学习,当维数(例如,节点的数量)和样本大小增长。它将加强对大数据背景下现有技术的理解。更重要的是,先进的建模方法和数据分析工具将通过快速实现的算法来开发,使研究人员和从业人员能够探索,理解并最终对复杂网络进行逆向工程。研究人员将与来自不同领域的研究人员互动,以推导和验证假设,并完善实验设计,为潜在的科学发现提供更深入的系统内部洞察力。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Haonan Wang其他文献

Distance control of virtual sound source based on switching electro-dynamic and parametric loudspeaker arrays
基于切换电动参量扬声器阵列的虚拟声源距离控制
  • DOI:
  • 发表时间:
    2022
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Ayano Hirose;Haonan Wang;Masato Nakayama;and Takanobu Nishiura
  • 通讯作者:
    and Takanobu Nishiura
Implications of hydrogen peroxide on bromate depression during seawater ozonation
过氧化氢对海水臭氧化过程中溴酸盐抑制的影响
  • DOI:
  • 发表时间:
    2021
  • 期刊:
  • 影响因子:
    8.8
  • 作者:
    Yixuan Yu;Yingping Zhao;Haonan Wang;Ping Tao;Xinmin Zhang;Mihua Shao;Tianjun Sun
  • 通讯作者:
    Tianjun Sun
Cost-benefit analysis of central and local voltage control provided by distributed generators in MV networks
中压网络中分布式发电机提供的中央和本地电压控制的成本效益分析
  • DOI:
    10.1109/ptc.2013.6652333
  • 发表时间:
    2013
  • 期刊:
  • 影响因子:
    0
  • 作者:
    B. Idlbi;K. Diwold;T. Stetz;Haonan Wang;M. Braun
  • 通讯作者:
    M. Braun
Prediction of the seismic behavior of concrete beams strengthened with aluminum alloy bars and/or basalt fiber‐reinforced polymer bars
用铝合金棒和/或玄武岩纤维增强聚合物棒加固的混凝土梁的抗震性能预测
Effects of measurement error on the strength of concentration-response relationships in aquatic toxicology
测量误差对水生毒理学中浓度-反应关系强度的影响
  • DOI:
    10.1007/s10646-009-0325-2
  • 发表时间:
    2009
  • 期刊:
  • 影响因子:
    2.7
  • 作者:
    D. Sonderegger;Haonan Wang;Yao Huang;W. Clements
  • 通讯作者:
    W. Clements

Haonan Wang的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Haonan Wang', 18)}}的其他基金

Development of Statistical Fault Detection Algorithms for Modern Power Grid Networks
现代电网统计故障检测算法的开发
  • 批准号:
    1923142
  • 财政年份:
    2019
  • 资助金额:
    $ 5.61万
  • 项目类别:
    Standard Grant
Exploration, Modeling and Inference for Complex Data Objects
复杂数据对象的探索、建模和推理
  • 批准号:
    1106975
  • 财政年份:
    2011
  • 资助金额:
    $ 5.61万
  • 项目类别:
    Standard Grant
Collaborative Research: Tree Structured Object Oriented Data Analysis
协作研究:树结构面向对象数据分析
  • 批准号:
    0854903
  • 财政年份:
    2009
  • 资助金额:
    $ 5.61万
  • 项目类别:
    Standard Grant
New Statistical Modeling Procedures for Object Oriented Data Analysis (OODA)
面向对象数据分析 (OODA) 的新统计建模程序
  • 批准号:
    0706761
  • 财政年份:
    2007
  • 资助金额:
    $ 5.61万
  • 项目类别:
    Continuing Grant

相似国自然基金

Research on Quantum Field Theory without a Lagrangian Description
  • 批准号:
    24ZR1403900
  • 批准年份:
    2024
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目
Cell Research
  • 批准号:
    31224802
  • 批准年份:
    2012
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
Cell Research
  • 批准号:
    31024804
  • 批准年份:
    2010
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
Cell Research (细胞研究)
  • 批准号:
    30824808
  • 批准年份:
    2008
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
Research on the Rapid Growth Mechanism of KDP Crystal
  • 批准号:
    10774081
  • 批准年份:
    2007
  • 资助金额:
    45.0 万元
  • 项目类别:
    面上项目

相似海外基金

NSFGEO-NERC: Collaborative Research: Exploring AMOC controls on the North Atlantic carbon sink using novel inverse and data-constrained models (EXPLANATIONS)
NSFGEO-NERC:合作研究:使用新颖的逆向模型和数据约束模型探索 AMOC 对北大西洋碳汇的控制(解释)
  • 批准号:
    2347992
  • 财政年份:
    2024
  • 资助金额:
    $ 5.61万
  • 项目类别:
    Standard Grant
NSFGEO-NERC: Collaborative Research: Exploring AMOC controls on the North Atlantic carbon sink using novel inverse and data-constrained models (EXPLANATIONS)
NSFGEO-NERC:合作研究:使用新颖的逆向模型和数据约束模型探索 AMOC 对北大西洋碳汇的控制(解释)
  • 批准号:
    2347991
  • 财政年份:
    2024
  • 资助金额:
    $ 5.61万
  • 项目类别:
    Standard Grant
Collaborative Research: A Novel Laboratory Approach for Exploring Contact Ice Nucleation
合作研究:探索接触冰核的新实验室方法
  • 批准号:
    2346198
  • 财政年份:
    2024
  • 资助金额:
    $ 5.61万
  • 项目类别:
    Standard Grant
Collaborative Research: A Novel Laboratory Approach for Exploring Contact Ice Nucleation
合作研究:探索接触冰核的新实验室方法
  • 批准号:
    2346197
  • 财政年份:
    2024
  • 资助金额:
    $ 5.61万
  • 项目类别:
    Standard Grant
Collaborative Research: CIF: Small: Versatile Data Synchronization: Novel Codes and Algorithms for Practical Applications
合作研究:CIF:小型:多功能数据同步:实际应用的新颖代码和算法
  • 批准号:
    2312872
  • 财政年份:
    2023
  • 资助金额:
    $ 5.61万
  • 项目类别:
    Standard Grant
Collaborative Research: Enhanced Photolysis and Advanced Oxidation Processes by Novel KrCl* (222 nm) Irradiation
合作研究:通过新型 KrCl* (222 nm) 辐照增强光解和高级氧化过程
  • 批准号:
    2310137
  • 财政年份:
    2023
  • 资助金额:
    $ 5.61万
  • 项目类别:
    Standard Grant
Collaborative Research: DMREF: Developing and Harnessing the Platform of Quasi-One-Dimensional Topological Materials for Novel Functionalities and Devices
合作研究:DMREF:开发和利用用于新功能和器件的准一维拓扑材料平台
  • 批准号:
    2324033
  • 财政年份:
    2023
  • 资助金额:
    $ 5.61万
  • 项目类别:
    Standard Grant
Collaborative Research: IHBEM: The fear of here: Integrating place-based travel behavior and detection into novel infectious disease models
合作研究:IHBEM:这里的恐惧:将基于地点的旅行行为和检测整合到新型传染病模型中
  • 批准号:
    2327797
  • 财政年份:
    2023
  • 资助金额:
    $ 5.61万
  • 项目类别:
    Continuing Grant
Collaborative Research: Applying a novel approach to link microbial growth efficiency, function and energy transfer in the ocean
合作研究:应用一种新方法将海洋中微生物的生长效率、功能和能量转移联系起来
  • 批准号:
    2219796
  • 财政年份:
    2023
  • 资助金额:
    $ 5.61万
  • 项目类别:
    Standard Grant
Collaborative Research: ATD: Fast Algorithms and Novel Continuous-depth Graph Neural Networks for Threat Detection
合作研究:ATD:用于威胁检测的快速算法和新颖的连续深度图神经网络
  • 批准号:
    2219956
  • 财政年份:
    2023
  • 资助金额:
    $ 5.61万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了