Smooth Dynamical Systems
平滑动力系统
基本信息
- 批准号:0706846
- 负责人:
- 金额:$ 12.6万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2007
- 资助国家:美国
- 起止时间:2007-06-01 至 2011-05-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
This research is primarily concerned with the dynamics of smooth diffeomorphisms of low- dimensional manifolds. Relevant questions deal with the existence of strange attractors (sometimes called "ergodic attractors"), the abundance of homoclinic tangencies, and the existence of symbolic extensions. By definition, an ergodic attractor is the support of a nonatomic ergodic SRB measure. Due to the work of Benedicks, Carleson, Wang, Young, Mora, and Viana it is known that there are smooth parametrized families of area-decreasing diffeomorphisms for which ergodic attractors exist for positive measure sets of parameters. A natural question is whether "positive measure" can be replaced with "open." Previous work of the principal investigator has shown that, in the presence of homoclinic tangencies, there are NO open sets of area-decreasing planar diffeomorphisms with ergodic attractors. Part of the present research investigates whether this lack of ergodic attractors is a "generic" property. In addition, attempts will be made to prove the existence of ergodic attractors in systems that are area-preserving in some parts of the phase space--thus removing the current dependence on sharp contraction of area in all known techniques. Other problems in the current project focus on the existence of symbolic extensions for maps with varying levels of smoothness. This research involves the dynamics of low-dimensional mappings. It is intimately related to understanding the solutions (or orbits) of nonlinear differential equations. Such equations arise in many scientific disciplines. To cite particular examples, they provide models for systems in biology such as circadian rhythms, blood flow, and the electrodynamics of nerve impulses; in astronomy in connection with the design of orbiting satellites; and even in weather prediction. In some specific models related to the foregoing general systems, it is known that the relevant equations cannot be solved explicitly. Instead, in the study of these systems one must rely on certain geometric information that is made available through numerical exploration with computers. This project attempts to provide a mathematically rigorous treatment of important properties related to equations that arise in such situations. The knowledge of these properties helps to provide tools that the scientist or engineer can use to describe, test, and refine models for a variety of things that occur in nature. As such, the present research has the potential to provide foundations for substantial scientific advancement.
本文主要研究低维流形光滑微分同态的动力学问题。相关问题涉及奇异吸引子的存在性(有时称为“遍历吸引子”)、同斜切线的丰度以及符号扩展的存在性。根据定义,遍历吸引子是非原子遍历SRB测度的支持。由于Benedicks, Carleson, Wang, Young, Mora和Viana的工作,我们知道存在光滑的减小面积的微分同胚族,其中遍历吸引子存在于参数的正测度集。一个自然的问题是,“积极措施”是否可以用“开放”来代替。先前的工作表明,在同斜切线的存在下,不存在具有遍历吸引子的面积递减的平面微分同胚的开集。本研究的一部分探讨了这种遍历吸引子的缺乏是否是一种“一般”性质。此外,将尝试证明在相空间的某些部分保持面积的系统中遍历吸引子的存在,从而消除当前所有已知技术中对面积急剧收缩的依赖。当前项目中的其他问题集中在具有不同平滑程度的地图的符号扩展的存在上。本研究涉及到低维映射的动力学。它与理解非线性微分方程的解(或轨道)密切相关。这样的方程出现在许多科学学科中。举个具体的例子,他们为生物系统提供了模型,如昼夜节律、血液流动和神经冲动的电动力学;在天文学上,与轨道卫星的设计有关;甚至在天气预报方面。在与上述一般系统相关的某些特定模型中,已知相关方程不能显式求解。相反,在研究这些系统时,人们必须依靠某些几何信息,这些信息可以通过计算机的数值探索获得。这个项目试图提供一种数学上严谨的处理方法,处理在这种情况下出现的与方程相关的重要性质。这些属性的知识有助于提供工具,科学家或工程师可以使用这些工具来描述、测试和完善自然界中发生的各种事物的模型。因此,目前的研究有可能为实质性的科学进步提供基础。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Sheldon Newhouse其他文献
SRB Measures for Some Stretched Hénon-Like Maps
- DOI:
10.1007/s11253-024-02310-1 - 发表时间:
2024-07-30 - 期刊:
- 影响因子:0.600
- 作者:
Michael Jakobson;Sheldon Newhouse - 通讯作者:
Sheldon Newhouse
Sheldon Newhouse的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Sheldon Newhouse', 18)}}的其他基金
Brazil U.S. Cooperative Workshop in Dynamical Systems; Rio de Janeiro, Brazil, July 19-28, 2000
巴西美国动力系统合作研讨会;
- 批准号:
0073000 - 财政年份:2000
- 资助金额:
$ 12.6万 - 项目类别:
Standard Grant
U.S.-Uruguay Joint Workshop on Dynamical Systems: March 27- April 2, 1995
美国-乌拉圭动力系统联合研讨会:1995年3月27日至4月2日
- 批准号:
9504748 - 财政年份:1995
- 资助金额:
$ 12.6万 - 项目类别:
Standard Grant
U.S.-Brazil Cooperative Science Program: Cooperation in Dynamical Systems
美国-巴西合作科学计划:动力系统合作
- 批准号:
9496262 - 财政年份:1994
- 资助金额:
$ 12.6万 - 项目类别:
Standard Grant
U.S.-Brazil Cooperative Science Program: Cooperation in Dynamical Systems
美国-巴西合作科学计划:动力系统合作
- 批准号:
9304569 - 财政年份:1993
- 资助金额:
$ 12.6万 - 项目类别:
Standard Grant
U.S.-Brazil Workshop in Dynamical Systems: Rio de Janeiro, Brazil, July 1989
美国-巴西动力系统研讨会:巴西里约热内卢,1989 年 7 月
- 批准号:
8902379 - 财政年份:1989
- 资助金额:
$ 12.6万 - 项目类别:
Standard Grant
U.S.-Brazil Cooperative Research in Dynamical Systems
美国-巴西动力系统合作研究
- 批准号:
8902380 - 财政年份:1989
- 资助金额:
$ 12.6万 - 项目类别:
Standard Grant
Mathematical Sciences: Dynamical Systems
数学科学:动力系统
- 批准号:
8503757 - 财政年份:1986
- 资助金额:
$ 12.6万 - 项目类别:
Continuing Grant
Mathematical Sciences: Dynamical Systems
数学科学:动力系统
- 批准号:
8219599 - 财政年份:1983
- 资助金额:
$ 12.6万 - 项目类别:
Continuing Grant
相似海外基金
Applications of Descriptive Set Theory in Ergodic Theory and Smooth Dynamical Systems
描述集合论在遍历理论和光滑动力系统中的应用
- 批准号:
2100367 - 财政年份:2021
- 资助金额:
$ 12.6万 - 项目类别:
Continuing Grant
Modeling vibrational behaviour of non-smooth large scale dynamical systems
模拟非光滑大型动力系统的振动行为
- 批准号:
RGPIN-2015-03650 - 财政年份:2019
- 资助金额:
$ 12.6万 - 项目类别:
Discovery Grants Program - Individual
Bifurcation-based stability analysis of hybrid dynamical systems with smooth approximating mode switching functions
具有平滑逼近模式切换函数的混合动力系统的基于分岔的稳定性分析
- 批准号:
18K11460 - 财政年份:2018
- 资助金额:
$ 12.6万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Modeling vibrational behaviour of non-smooth large scale dynamical systems
模拟非光滑大型动力系统的振动行为
- 批准号:
RGPIN-2015-03650 - 财政年份:2018
- 资助金额:
$ 12.6万 - 项目类别:
Discovery Grants Program - Individual
Modeling vibrational behaviour of non-smooth large scale dynamical systems
模拟非光滑大型动力系统的振动行为
- 批准号:
RGPIN-2015-03650 - 财政年份:2017
- 资助金额:
$ 12.6万 - 项目类别:
Discovery Grants Program - Individual
Modeling vibrational behaviour of non-smooth large scale dynamical systems
模拟非光滑大型动力系统的振动行为
- 批准号:
RGPIN-2015-03650 - 财政年份:2016
- 资助金额:
$ 12.6万 - 项目类别:
Discovery Grants Program - Individual
Modeling vibrational behaviour of non-smooth large scale dynamical systems
模拟非光滑大型动力系统的振动行为
- 批准号:
RGPIN-2015-03650 - 财政年份:2015
- 资助金额:
$ 12.6万 - 项目类别:
Discovery Grants Program - Individual
Quasi-symmetric rigidity in smooth dynamical systems
光滑动力系统中的拟对称刚度
- 批准号:
387658-2010 - 财政年份:2011
- 资助金额:
$ 12.6万 - 项目类别:
Postdoctoral Fellowships
Quasi-symmetric rigidity in smooth dynamical systems
光滑动力系统中的拟对称刚度
- 批准号:
387658-2010 - 财政年份:2010
- 资助金额:
$ 12.6万 - 项目类别:
Postdoctoral Fellowships
DynSyst_Special_Topics: New Challenges in Non-Smooth Dynamical Systems - Experiments and Analysis
DynSyst_Special_Topics:非光滑动力系统的新挑战 - 实验与分析
- 批准号:
0927186 - 财政年份:2009
- 资助金额:
$ 12.6万 - 项目类别:
Standard Grant














{{item.name}}会员




