DynSyst_Special_Topics: New Challenges in Non-Smooth Dynamical Systems - Experiments and Analysis
DynSyst_Special_Topics:非光滑动力系统的新挑战 - 实验与分析
基本信息
- 批准号:0927186
- 负责人:
- 金额:$ 37.45万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2009
- 资助国家:美国
- 起止时间:2009-08-01 至 2013-07-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
This award is funded under the American Recovery and Reinvestment Act of 2009 (Public Law 111-5).This proposal puts forward closely coupled studies involving experiments, modeling, analysis, and numerical simulations of fundamental hybrid mechanical systems with piecewise smooth motion and discrete impact events. The investigators will use recent developments in the analysis of bifurcations in non-smooth dynamics as a starting point for the work. The approach taken in this project is to expand the understanding of the dynamics, stability and bifurcations of systems with impacts by detailed exploration of two prototype problems: (i) the driven motion of tethered particles and (ii) the impacting pendulum. These problems provide solid testbeds for the studies in response to recent interest in bifurcations due to non-smooth forcing and collisions in multi-element systems. These problems have significance as basic components in larger-scale mechanical and industrial systems. They are also very well suited to experimental studies, allowing for the validation of numerical simulations and simplified mathematical models. This project will advance the understanding of classes of mechanical systems ubiquitous in natural and industrial settings. Potential results on stability and bifurcations will allow for more efficient, productive and reliable operating conditions. Moreover, they fit into a long-term program for the study of the feasibility of damage detection via system response to impactive forcing. Namely, we seek to demonstrate that bifurcations and response to impactive forcing can be used to diagnose internal structural defects as a means of nondestructive testing and possible control and suppression of instabilities. The proposal builds a new collaboration between researchers in engineering and applied mathematics and will incorporate graduate and undergraduate student training in an interdisciplinary research program that will develop coordinated advanced skills in engineering and nonlinear dynamics. There are plans for ensuring the participation of under-represented groups, building on recent successes. Results from this project will be disseminated through journal publications in engineering and applied dynamical systems, presentations at research conferences and through a project web page and via connections with Duke University's Center for Nonlinear and Complex Systems. Research will be augmented by improvements in student training in the development of courses in engineering and applied mathematics.
该奖项是根据2009年《美国复苏与再投资法案》(Public Law 111-5)资助的。这项建议提出了一项紧密耦合的研究,涉及具有分段平稳运动和离散冲击事件的基本混合机械系统的实验、建模、分析和数值模拟。研究人员将使用非光滑动力学中分叉分析的最新发展作为这项工作的起点。这个项目所采取的方法是通过对两个原型问题的详细探索来扩展对受影响系统的动力学、稳定性和分叉的理解:(I)系留粒子的驱动运动和(Ii)碰撞摆。这些问题为最近对多元素系统中由于非光滑强迫和碰撞引起的分叉的兴趣的研究提供了坚实的试验台。这些问题作为大型机械和工业系统的基础部件具有重要意义。它们也非常适合于实验研究,允许对数值模拟和简化的数学模型进行验证。该项目将促进对自然和工业环境中普遍存在的机械系统类别的理解。在稳定性和分叉方面的潜在结果将允许更有效、更多产和更可靠的运行条件。此外,它们符合一个长期计划,用于研究通过系统对冲击强迫的反应进行损害检测的可行性。也就是说,我们试图证明,分叉和对冲击强迫的响应可以用来诊断内部结构缺陷,作为一种无损测试以及可能的控制和抑制不稳定性的手段。该提案在工程和应用数学领域的研究人员之间建立了一种新的合作,并将把研究生和本科生培训纳入一个跨学科研究项目,该项目将发展工程和非线性动力学方面的协调高级技能。在最近取得成功的基础上,制定了确保任职人数不足的群体参与的计划。该项目的成果将通过工程和应用动力系统的期刊出版物、在研究会议上的演讲、通过项目网页以及通过与杜克大学的非线性和复杂系统中心的联系来传播。将通过改进学生在开发工程和应用数学课程方面的培训来加强研究。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Lawrence Virgin其他文献
Lawrence Virgin的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Lawrence Virgin', 18)}}的其他基金
A Configuration-Space Interrogation Approach to the Understanding and Design of Critical Load-Bearing Structures Susceptible to Buckling
用于理解和设计易受屈曲影响的关键承载结构的配置空间询问方法
- 批准号:
1926672 - 财政年份:2019
- 资助金额:
$ 37.45万 - 项目类别:
Standard Grant
Conference Support: XXXV Dynamics Days 2016 Conference on Nonlinear Dynamics and Chaos; Durham, North Carolina; January 7-10, 2016
会议支持:XXXV Dynamics Days 2016 非线性动力学和混沌会议;
- 批准号:
1555406 - 财政年份:2015
- 资助金额:
$ 37.45万 - 项目类别:
Standard Grant
Collaborative Research: A New Framework for Prediction of Buckling and Other Critical Transitions in Nonlinear Structural Mechanics
协作研究:预测非线性结构力学中屈曲和其他关键转变的新框架
- 批准号:
1537425 - 财政年份:2015
- 资助金额:
$ 37.45万 - 项目类别:
Standard Grant
A Novel Type of Vibration Isolator Utilizing Buckled Structures
一种利用扣状结构的新型隔振器
- 批准号:
0301084 - 财政年份:2003
- 资助金额:
$ 37.45万 - 项目类别:
Standard Grant
RIA: Control of Chaotic Impacting Oscillators
RIA:混沌冲击振荡器的控制
- 批准号:
9209886 - 财政年份:1992
- 资助金额:
$ 37.45万 - 项目类别:
Continuing Grant
相似海外基金
New Challenges in the Study of Propagation of Randomness for Nonlinear Evolution Equations
非线性演化方程随机传播研究的新挑战
- 批准号:
2400036 - 财政年份:2024
- 资助金额:
$ 37.45万 - 项目类别:
Standard Grant
Modelling the rheology of biopolymers and sustainable food systems: exploring new challenges for soft matter research
生物聚合物和可持续食品系统的流变学建模:探索软物质研究的新挑战
- 批准号:
EP/X014738/1 - 财政年份:2024
- 资助金额:
$ 37.45万 - 项目类别:
Research Grant
CAREER: New Challenges in Statistical Genetics: Mendelian Randomization, Integrated Omics and General Methodology
职业:统计遗传学的新挑战:孟德尔随机化、综合组学和通用方法论
- 批准号:
2238656 - 财政年份:2023
- 资助金额:
$ 37.45万 - 项目类别:
Continuing Grant
Political Debasement in Japan and Its Challenges: New Directions in the Study of Deliberative Political Communication
日本的政治堕落及其挑战:协商政治传播研究的新方向
- 批准号:
23K01245 - 财政年份:2023
- 资助金额:
$ 37.45万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
AF: Small: New Challenges and Approaches in Clustering Algorithms
AF:小:聚类算法的新挑战和方法
- 批准号:
2311397 - 财政年份:2023
- 资助金额:
$ 37.45万 - 项目类别:
Standard Grant
CAREER: New Challenges in Analysis of Boolean Functions
职业:布尔函数分析的新挑战
- 批准号:
2239160 - 财政年份:2023
- 资助金额:
$ 37.45万 - 项目类别:
Continuing Grant
Human Developmental Biology Resource (HDBR): meeting new trends and challenges in developmental biobanking
人类发育生物学资源(HDBR):应对发育生物样本库的新趋势和挑战
- 批准号:
MR/X008304/1 - 财政年份:2023
- 资助金额:
$ 37.45万 - 项目类别:
Research Grant
New Phase Field Models for Unravelling Multi-Physics Material Degradation Challenges (NEWPHASE)
用于解决多物理材料降解挑战的新相场模型 (NEWPHASE)
- 批准号:
MR/V024124/2 - 财政年份:2023
- 资助金额:
$ 37.45万 - 项目类别:
Fellowship
New Challenges in Wireless Systems
无线系统的新挑战
- 批准号:
RGPIN-2020-04188 - 财政年份:2022
- 资助金额:
$ 37.45万 - 项目类别:
Discovery Grants Program - Individual
NEW CHALLENGES FOR OCCUPATIONAL SAFETY AND HEALTH IN TIMES OF THE DIGITAL TRANSFORMATION IN EUROPE: THE ROLE OF DIGITAL LABOUR PLATFORMS
欧洲数字化转型时期职业安全与健康的新挑战:数字化劳动力平台的作用
- 批准号:
ES/X006301/1 - 财政年份:2022
- 资助金额:
$ 37.45万 - 项目类别:
Research Grant














{{item.name}}会员




