Model Selection Diagnostics and Localized Model Selection/Combination
选型诊断和本地化选型/组合
基本信息
- 批准号:0706850
- 负责人:
- 金额:$ 19.75万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2007
- 资助国家:美国
- 起止时间:2007-06-01 至 2011-05-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Although research in the last decade has brought in general awareness of the seriousness of statistical uncertainty due to model selection, much more effort is needed to reform the currently still dominating practice of basing all statistical conclusions on a final selected model. From a methodological standpoint, a critical component missing in the toolbox of model selection and model combination is model selection diagnostics (not model diagnostics). The PI seeks model selection diagnosis methods that go beyond simple bootstrap uncertainty measures. They will address the uncertainty in variable selection and in estimation of a quantity of interest via means that take into account the distances between subsets of variables or between estimates from the candidate models. For high-dimensional or complex data, it is very likely that different candidate procedures perform the best in different regions, especially when very distinct learning methods are considered. This calls for localized model selection/combination methodology and theory, which is the second major component of this project. The PI takes new approaches and derives oracle inequalities on performance of the new methods for localized model selection or combination.Statistical methods have become an essential ingredient in all applied sciences. Proper quantifications of the true uncertainty in mathematical descriptions of the natural and social phenomena are fundamentally important to draw unbiased and accurate conclusions. Since model selection and model combination play a central role in statistical analysis, the proposed work on accurately measuring model selection uncertainty and the resulting better tools for model selection and model combination, together with other researches in the area, are expected to contribute substantially to changing the currently unsound practices of statistical model selection in applied sciences. The improved use of data in information extraction will have broader impacts in scientific research, policy and decision making.
虽然过去十年的研究使人们普遍认识到由于模型选择而造成的统计不确定性的严重性,但仍需要作出更多的努力来改革目前仍然占主导地位的做法,即所有统计结论都以最终选定的模型为基础。从方法论的角度来看,模型选择和模型组合工具箱中缺少的一个关键组成部分是模型选择诊断(而不是模型诊断)。PI寻求超越简单自举不确定性测量的模型选择诊断方法。它们将通过考虑到变量子集之间或候选模型估计值之间的距离的方法来解决变量选择和感兴趣数量估计中的不确定性。对于高维或复杂的数据,很可能不同的候选过程在不同的区域中表现最好,特别是当考虑非常不同的学习方法时。这就需要本地化的模型选择/组合方法和理论,这是本项目的第二个主要组成部分。PI采用了新的方法,并推导出了关于局部化模型选择或组合的新方法的性能的预言不等式。统计方法已成为所有应用科学的重要组成部分。在自然和社会现象的数学描述中,正确量化真实的不确定性对于得出公正和准确的结论至关重要。由于模型选择和模型组合在统计分析中起着核心作用,准确测量模型选择的不确定性和由此产生的更好的工具,模型选择和模型组合,以及在该领域的其他研究,预计将大大有助于改变目前不健全的做法,统计模型选择在应用科学。在信息提取中更好地利用数据将对科学研究、政策和决策产生更广泛的影响。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Yuhong Yang其他文献
Combining regression quantile estimators
组合回归分位数估计器
- DOI:
- 发表时间:
2009 - 期刊:
- 影响因子:0
- 作者:
Kejia Shan;Yuhong Yang - 通讯作者:
Yuhong Yang
Asymmetric addition of benzothiazole to N-tert-butanesulfinyl imine for the synthesis of chiral -branched heteroaryl amines
苯并噻唑与N-叔丁亚磺酰亚胺不对称加成合成手性化合物
- DOI:
- 发表时间:
2012 - 期刊:
- 影响因子:1.8
- 作者:
Jinlong Zhang;Yuhong Yang;Mei Wang;Li Lin;Rui Wang - 通讯作者:
Rui Wang
Asymmetric addition of benzothiazole to N-tert-butanesulfinyl imine for the synthesis of chiral α-branched heteroaryl amines
苯并噻唑与 N-叔丁亚磺酰亚胺的不对称加成合成手性 α-支化杂芳胺
- DOI:
10.1016/j.tetlet.2012.09.131 - 发表时间:
2012-12 - 期刊:
- 影响因子:1.8
- 作者:
Yuhong Yang;Mei Wang;Li Lin;Rui Wang - 通讯作者:
Rui Wang
Breeding of cabbage (Brassica oleracea L. var. capitata) with Fusarium wilt resistance based on microspore culture and biomarker selection
基于小孢子培养和生物标志物选择的抗枯萎病甘蓝育种
- DOI:
- 发表时间:
2014 - 期刊:
- 影响因子:1.9
- 作者:
Zhi-yuan Fang;Yuhong Yang;Bingyan Xie;Xiaowu Wang - 通讯作者:
Xiaowu Wang
Multi-task learning for single-cell multi-modality biology
单细胞多模态生物学的多任务学习
- DOI:
- 发表时间:
2022 - 期刊:
- 影响因子:0
- 作者:
Xin;Jiawei Zhang;Yichun He;Xinhe Zhang;Zuwan Lin;S. Partarrieu;Emma Bou Hanna;Zhaolin Ren;Yuhong Yang;Xiao Wang;N. Li;Jie Ding;Jia Liu - 通讯作者:
Jia Liu
Yuhong Yang的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Yuhong Yang', 18)}}的其他基金
Multi-armed Bandit Problems with Covariates
具有协变量的多臂老虎机问题
- 批准号:
1106576 - 财政年份:2011
- 资助金额:
$ 19.75万 - 项目类别:
Continuing Grant
Adaptive Regression for Dependent Data by Combining Different Procedures
通过组合不同的过程对相关数据进行自适应回归
- 批准号:
0515990 - 财政年份:2004
- 资助金额:
$ 19.75万 - 项目类别:
Continuing Grant
Adaptive Regression for Dependent Data by Combining Different Procedures
通过组合不同的过程对相关数据进行自适应回归
- 批准号:
0094323 - 财政年份:2001
- 资助金额:
$ 19.75万 - 项目类别:
Continuing Grant
相似国自然基金
Intelligent Patent Analysis for Optimized Technology Stack Selection:Blockchain BusinessRegistry Case Demonstration
- 批准号:
- 批准年份:2024
- 资助金额:万元
- 项目类别:外国学者研究基金项目
连锁群选育法(Linkage Group Selection)在柔嫩艾美耳球虫表型相关基因研究中应用
- 批准号:30700601
- 批准年份:2007
- 资助金额:17.0 万元
- 项目类别:青年科学基金项目
相似海外基金
Evolutionarily smart vaccine strain selection for proactive vaccinology
用于主动疫苗学的进化智能疫苗株选择
- 批准号:
MR/Y004337/1 - 财政年份:2024
- 资助金额:
$ 19.75万 - 项目类别:
Research Grant
mRNA selection for translation: beyond the canonical view
用于翻译的 mRNA 选择:超越规范观点
- 批准号:
BB/Y005783/1 - 财政年份:2024
- 资助金额:
$ 19.75万 - 项目类别:
Research Grant
Development of Integrated Quantum Inspired Algorithms for Shapley Value based Fast and Interpretable Feature Subset Selection
基于 Shapley 值的快速且可解释的特征子集选择的集成量子启发算法的开发
- 批准号:
24K15089 - 财政年份:2024
- 资助金额:
$ 19.75万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Leveraging Machine Learning to Examine Engineering Students Self-selection in Entrepreneurship Education Programs
利用机器学习检查工科学生在创业教育项目中的自我选择
- 批准号:
2321175 - 财政年份:2024
- 资助金额:
$ 19.75万 - 项目类别:
Standard Grant
ERI: Intelligent Modeling and Parameter Selection in Distributed Optimization for Power Networks
ERI:电力网络分布式优化中的智能建模和参数选择
- 批准号:
2347120 - 财政年份:2024
- 资助金额:
$ 19.75万 - 项目类别:
Standard Grant
Indication selection, patient stratification, and IND preparation for STX-002: the first-in-class LRG1 inhibitor for treatment of chronic kidney disease and immunotherapy-resistant tumours.
STX-002的适应症选择、患者分层和IND准备:用于治疗慢性肾病和免疫治疗耐药肿瘤的一流LRG1抑制剂。
- 批准号:
10092585 - 财政年份:2024
- 资助金额:
$ 19.75万 - 项目类别:
Collaborative R&D
Universal Model Selection Criteria for Scientific Machine Learning
科学机器学习的通用模型选择标准
- 批准号:
DE240100144 - 财政年份:2024
- 资助金额:
$ 19.75万 - 项目类别:
Discovery Early Career Researcher Award
AI tools for biocatalyst route selection
用于生物催化剂路线选择的人工智能工具
- 批准号:
10076156 - 财政年份:2023
- 资助金额:
$ 19.75万 - 项目类别:
Grant for R&D
Development of a food bolus formation ability evaluation system to support the selection of appropriate food forms.
开发食物团形成能力评估系统以支持选择合适的食物形式。
- 批准号:
23K09279 - 财政年份:2023
- 资助金额:
$ 19.75万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
A novel neural pathway of preferential food selection for high carbohydrate and fat diets.
高碳水化合物和脂肪饮食的优先食物选择的新神经通路。
- 批准号:
23H02965 - 财政年份:2023
- 资助金额:
$ 19.75万 - 项目类别:
Grant-in-Aid for Scientific Research (B)