Miniaturized magnetostrictive strain sensors for novel applications of atomic force microscopy
用于原子力显微镜新应用的微型磁致伸缩应变传感器
基本信息
- 批准号:181655085
- 负责人:
- 金额:--
- 依托单位:
- 依托单位国家:德国
- 项目类别:Research Grants
- 财政年份:2010
- 资助国家:德国
- 起止时间:2009-12-31 至 2016-12-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Based on the results of the first application period we will use magnetostrictive tunneling structures as highly sensitive strain sensors to enable new applications of atomic force microscopy with self-sensing cantilevers. With this aim, the miniaturization of the strain-sensitive tunneling structures will be pushed forward to submicron scales and supported by micromagnetic simulations. The comparison between simulation and experiment will contribute to the understanding of the magnetization reversal in mechanically stressed magnetostrictive structures, finally leading to an increased control of their magnetization configurations. This in turn has a direct impact on the long-term stability of the sensors.Through the planned development of the layer system of tunneling structures, we aim on the one hand on the increase of sensitivity and signal to noise ratio. On the other hand, an internal magnetic bias field will be implemented into the layer system, in order to eliminate the need for an external bias field to measure at an optimal operating point. For this purpose we will apply the concept of a sensor electrode coupled to an antiferromagnetic layer sensor, which has been very successful in solving a similar problem with magnetoelectric magnetic field sensors.With these new self-sensing cantilevers we will carry out atomic force microscopy experiments under ambient conditions, in vacuum, and in liquids on different sample systems. Our focus is on applications where conventional optical detection system of conventional AFMs can be detrimental. Furthermore, we will build and analyze cantilevers with multiple strain sensors for friction force and multi-frequency measurements.
根据第一个申请期的结果,我们将使用磁性隧道结构作为高度敏感的应变传感器,以使原子力显微镜与自感应悬臂的新应用。以此目的,应应变敏感的隧道结构的微型化将被推向亚微米尺度,并由微磁模拟支持。模拟与实验之间的比较将有助于理解机械应力的磁静脉结构中磁化逆转的理解,最后导致对其磁化构型的控制增加。这反过来又对传感器的长期稳定性产生了直接影响。通过计划的隧道结构层系统的开发,我们的目标是提高灵敏度和信号噪声比。另一方面,将在图层系统中实现内部磁性偏置字段,以消除对最佳操作点测量外部偏置字段的需求。为此,我们将应用耦合到抗铁磁层传感器的传感器电极的概念,该传感器在解决磁电磁场传感器的类似问题方面非常成功。这些新的自感悬臂在环境条件下,在真空液体和不同样品中,我们将进行原子力显微镜显微镜实验。我们的重点是传统AFMS常规光学检测系统可能有害的应用。此外,我们将使用多个应变传感器来构建和分析悬臂,用于摩擦力和多频测量。
项目成果
期刊论文数量(5)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Magnetoresistive and Thermoresistive Scanning Probe Microscopy With Applications in Micro- and Nanotechnology
磁阻和热阻扫描探针显微镜在微米和纳米技术中的应用
- DOI:10.5445/ksp/1000042497
- 发表时间:2014
- 期刊:
- 影响因子:0
- 作者:T. Meier
- 通讯作者:T. Meier
A scanning probe microscope for magnetoresistive cantilevers utilizing a nested scanner design for large-area scans
- DOI:10.3762/bjnano.6.46
- 发表时间:2015-02-13
- 期刊:
- 影响因子:3.1
- 作者:Meier, Tobias;Foerste, Alexander;Hoelscher, Hendrik
- 通讯作者:Hoelscher, Hendrik
Highly strain-sensitive magnetostrictive tunnel magnetoresistance junctions
- DOI:10.1016/j.jmmm.2015.01.083
- 发表时间:2015-06-15
- 期刊:
- 影响因子:2.7
- 作者:Tavassolizadeh, Ali;Hayes, Patrick;Meyners, Dirk
- 通讯作者:Meyners, Dirk
Tailored probes for atomic force microscopy fabricated by two-photon polymerization
- DOI:10.1063/1.4960386
- 发表时间:2016-08-08
- 期刊:
- 影响因子:4
- 作者:Goering, Gerald;Dietrich, Philipp-Immanuel;Hoelscher, Hendrik
- 通讯作者:Hoelscher, Hendrik
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Professor Dr. Hendrik Hölscher其他文献
Professor Dr. Hendrik Hölscher的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Professor Dr. Hendrik Hölscher', 18)}}的其他基金
Analyse und Simulation der Nicht-Kontakt-Rasterkraftmikroskopie im UHV mittels ab initio Molekulardynamik
使用从头算分子动力学分析和模拟特高压非接触原子力显微镜
- 批准号:
5428338 - 财政年份:2004
- 资助金额:
-- - 项目类别:
Research Grants
相似海外基金
FMSG: Bio: Rapid Bio-Printing of Hybrid Piezoelectric and Magnetostrictive Platforms for Tissue Engineering
FMSG:生物:用于组织工程的混合压电和磁致伸缩平台的快速生物打印
- 批准号:
2229279 - 财政年份:2022
- 资助金额:
-- - 项目类别:
Standard Grant
Design and development of flexible piezoelectric/magnetostrictive composite materials and development of energy harvesting IoT systems
柔性压电/磁致伸缩复合材料的设计与开发以及能量收集物联网系统的开发
- 批准号:
21J10839 - 财政年份:2021
- 资助金额:
-- - 项目类别:
Grant-in-Aid for JSPS Fellows
Design and development of metal-based magnetostrictive composites and their application in high-performance vibration energy harvesting devices
金属基磁致伸缩复合材料的设计开发及其在高性能振动能量收集装置中的应用
- 批准号:
20J11439 - 财政年份:2020
- 资助金额:
-- - 项目类别:
Grant-in-Aid for JSPS Fellows
Piezoelectric and Magnetostrictive Mechanical Design and Development of High Energy Conversion in Electronic Composite Materials
电子复合材料高能量转换的压电和磁致伸缩机械设计与开发
- 批准号:
19H00733 - 财政年份:2019
- 资助金额:
-- - 项目类别:
Grant-in-Aid for Scientific Research (A)
Development of magnetostrictive paper reversibly self-transformable magnetostrictive origami from 2D to 3D by applying a magnetic field
通过施加磁场开发从 2D 到 3D 的磁致伸缩纸可逆自变形磁致伸缩折纸
- 批准号:
19K14836 - 财政年份:2019
- 资助金额:
-- - 项目类别:
Grant-in-Aid for Early-Career Scientists