Almost Conjugacy
几乎共轭
基本信息
- 批准号:0708083
- 负责人:
- 金额:$ 38万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2007
- 资助国家:美国
- 起止时间:2007-07-01 至 2011-06-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
AbstractWe address a broadly fundamental modeling issue in science as related to the field of dynamical systems by considering the question: when is a model of a physical system a "good" representation. While conjugacy provides a means to determine whether two systems are dynamically equivalent, there is no sufficient mathematical technology to decide when the dynamics of a "toy" model are like (although not identical to) the dynamics of the physical system. The concept of conjugacy is too rigid and cannot be applied in the typical situation of applied dynamical systems, where me might say that the model only "reminds us" of the true system. We propose here methods based on a fixed point iteration scheme, and some variants which we will develop for broader practical numerical application, to produce a function which we call a "commuter." The commuter is the conjugacy function between two equivalent dynamical systems, but a non-homeomorphic change of coordinates translating between dissimilar systems. This translation is natural to the concepts of dynamical systems in that it matches the systems within the language of their orbit structures, and our practical computation is related to the concept of orbit equivalence from the field of symbolic dynamics. Our key method is based on measuring failure of this commuter function to be a homeomorphism - which we call homeomorphic defect. The central point is that we compare nonequivalent systems by quantifying how much the commuter functions fails to be a homeomorphism, an approach that respects the dynamics better than the traditional methods of comparison based on Banach space norms.Experts in many given fields of science will often have little difficulty in forming opinions of model quality. For example, a cardiac specialist may agree that a certain equation may make a good model of the human heart, or the meteorologist may believe that a particular low-dimensional simulation may produce what "looks like" realistic weather. Clearly there is a need to put this notion of "approximate" modeling on a clear mathematical footing, particularly when the models provide qualitative descriptions of real world phenomena. Our work provides a computational method to allow researchers and scientific experts to assess which model is most suitable for their work, what modeling parameters are appropriate, or why certain models might better fit a certain physical situation. At the heart of the work is that we provide a means to "quantify the quality" in a model. This research has direct application to problems in the public health sphere, such as the development of a real-time EKG monitoring systems to detect abnormal cardiac heart rhythms, to better characterizing models of the weather, to improve our understanding of turbulence in fluid flow systems, and to finer design of structural mechanical systems such as those found in aircraft wings and bridges.
摘要我们通过考虑以下问题来解决科学中与动力系统领域相关的一个广泛的基本建模问题:一个物理系统的模型何时是一个“好的”表示。虽然共轭性提供了一种确定两个系统是否动态等效的方法,但没有足够的数学技术来确定“玩具”模型的动力学何时与物理系统的动力学相似(尽管不完全相同)。共轭的概念太死板,不能应用于应用动力系统的典型情况,在这种情况下,我可能会说模型只是“提醒我们”真实的系统。我们在这里提出了基于不动点迭代方案的方法,以及我们将为更广泛的实际数值应用开发的一些变体,以产生我们称之为“通勤者”的函数。通勤者是两个等效动力系统之间的共轭函数,而是不同系统之间的非同胚坐标平移。这种转换对于动力系统的概念来说是很自然的,因为它与系统的轨道结构语言相匹配,我们的实际计算与符号动力学领域的轨道等效概念有关。我们的关键方法是基于测量该通勤函数是同胚的失败-我们称之为同胚缺陷。本文的中心观点是,我们通过量化通勤函数在多大程度上不是同胚来比较非等价系统,这种方法比基于巴拿赫空间范数的传统比较方法更尊重动力学。许多特定科学领域的专家在形成模型质量的意见方面通常没有什么困难。例如,一位心脏病专家可能同意某一方程可以作为人类心脏的一个很好的模型,或者气象学家可能相信一个特定的低维模拟可以产生“看起来像”真实的天气。显然,有必要将“近似”建模的概念置于清晰的数学基础之上,特别是当模型提供对现实世界现象的定性描述时。我们的工作提供了一种计算方法,允许研究人员和科学专家评估哪个模型最适合他们的工作,什么建模参数是合适的,或者为什么某些模型可能更适合特定的物理情况。工作的核心是我们提供了一种在模型中“量化质量”的方法。这项研究直接应用于公共卫生领域的问题,例如开发实时心电图监测系统以检测异常心律,更好地表征天气模型,提高我们对流体流动系统湍流的理解,以及更精细地设计结构机械系统,如飞机机翼和桥梁。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Erik Bollt其他文献
Underwater Time of Flight Camera Rangefinding with Backscatter Phasor Subtraction
带反向散射相量减法的水下飞行时间相机测距
- DOI:
10.1109/oceans47191.2022.9977327 - 发表时间:
2022 - 期刊:
- 影响因子:0
- 作者:
Austin W. Jantzi;W. Jemison;Prashant Athavale;M. Banavar;Erik Bollt;Luke Rumbaugh;D. Illig - 通讯作者:
D. Illig
Entropic Regression DMD (ERDMD) Discovers Informative Sparse and Nonuniformly Time Delayed Models
熵回归 DMD (ERDMD) 发现信息丰富的稀疏和非均匀时滞模型
- DOI:
- 发表时间:
2024 - 期刊:
- 影响因子:0
- 作者:
Christopher W. Curtis;Erik Bollt;D. J. Alford - 通讯作者:
D. J. Alford
How Neural Networks Work: Unraveling the Mystery of Randomized Neural Networks For Functions and Chaotic Dynamical Systems
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
Erik Bollt - 通讯作者:
Erik Bollt
Erik Bollt的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Erik Bollt', 18)}}的其他基金
Collaborative Research: Geometry of Group Behaviors with Application to Fish Schooling
合作研究:群体行为几何学及其在鱼群中的应用
- 批准号:
1129859 - 财政年份:2011
- 资助金额:
$ 38万 - 项目类别:
Standard Grant
A Transfer Operator Approach to Modeling Deterministic and Stochastic Transport, with Applications in the Physical Sciences
确定性和随机传输建模的传递算子方法及其在物理科学中的应用
- 批准号:
0404778 - 财政年份:2004
- 资助金额:
$ 38万 - 项目类别:
Continuing Grant
RUI: Combinatorial Control of Chaos, Symbolic Dynamics, Optimal Control and Inverse Frobenius-Perron Problem
RUI:混沌、符号动力学、最优控制和逆 Frobenius-Perron 问题的组合控制
- 批准号:
0071314 - 财政年份:2000
- 资助金额:
$ 38万 - 项目类别:
Interagency Agreement
Applications and Theory of Controlling Symbol Dynamics: Communicating with Chaos
控制符号动力学的应用和理论:与混沌通信
- 批准号:
9704639 - 财政年份:1997
- 资助金额:
$ 38万 - 项目类别:
Interagency Agreement
相似海外基金
RUI: Geometry of Conjugacy and K-Theory in Affine Weyl Groups
RUI:仿射外尔群中的共轭几何和 K 理论
- 批准号:
2202017 - 财政年份:2022
- 资助金额:
$ 38万 - 项目类别:
Standard Grant
Study on north-south conjugacy of high energy particle precipitation from space
空间高能粒子降水南北共轭性研究
- 批准号:
22KK0049 - 财政年份:2022
- 资助金额:
$ 38万 - 项目类别:
Fund for the Promotion of Joint International Research (Fostering Joint International Research (B))
Conjugacy to Rotations of Asymmetric Critical Point Maps
非对称临界点图旋转的共轭
- 批准号:
535275-2019 - 财政年份:2021
- 资助金额:
$ 38万 - 项目类别:
Postgraduate Scholarships - Doctoral
Conjugacy to Rotations of Asymmetric Critical Point Maps
非对称临界点图旋转的共轭
- 批准号:
535275-2019 - 财政年份:2020
- 资助金额:
$ 38万 - 项目类别:
Postgraduate Scholarships - Doctoral
Conjugacy to Rotations of Asymmetric Critical Point Maps
非对称临界点图旋转的共轭
- 批准号:
535275-2019 - 财政年份:2019
- 资助金额:
$ 38万 - 项目类别:
Postgraduate Scholarships - Doctoral
Study on conjugacy of auroral phenomena with high temporal resolution observations
极光现象与高时间分辨率观测的共轭研究
- 批准号:
15H02628 - 财政年份:2015
- 资助金额:
$ 38万 - 项目类别:
Grant-in-Aid for Scientific Research (A)
MEASURED CONJUGACY IN MATRIX ALGEBRAS II
矩阵代数 II 中共轭的测量
- 批准号:
480917-2015 - 财政年份:2015
- 资助金额:
$ 38万 - 项目类别:
University Undergraduate Student Research Awards
Measured Conjugacy and Canonical Forms over Discrete Valuation Rings
离散评估环上测量的共轭和规范形式
- 批准号:
480332-2015 - 财政年份:2015
- 资助金额:
$ 38万 - 项目类别:
Alexander Graham Bell Canada Graduate Scholarships - Master's
Measured conjugacy in matrix algebra
矩阵代数中的测量共轭
- 批准号:
467848-2014 - 财政年份:2014
- 资助金额:
$ 38万 - 项目类别:
University Undergraduate Student Research Awards
Understanding Conjugacy and Non-conjugacy of the Auroral Electrojet System
了解极光电喷射系统的共轭和非共轭
- 批准号:
1104338 - 财政年份:2012
- 资助金额:
$ 38万 - 项目类别:
Continuing Grant