RUI: Geometry of Conjugacy and K-Theory in Affine Weyl Groups

RUI:仿射外尔群中的共轭几何和 K 理论

基本信息

  • 批准号:
    2202017
  • 负责人:
  • 金额:
    $ 17万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2022
  • 资助国家:
    美国
  • 起止时间:
    2022-06-01 至 2025-05-31
  • 项目状态:
    未结题

项目摘要

We encounter symmetry in nearly every aspect of our daily lives: looking at our faces in the mirror, watching snowflakes fall from the sky, and driving across bridges. Symmetric organisms persist through evolution in nature, symmetric protagonists are perceived as especially beautiful in art, and symmetric components are critical to engineering structures that can withstand powerful forces. The set of symmetries of a particular physical object enjoys a rich algebraic structure, because symmetries are operations that can be composed together. This group of all symmetries can then be conveniently studied by encoding each symmetry as a rectangular array of numbers called a matrix. This process of passing from a symmetric object in the natural world to a related collection of matrices is the hallmark of the mathematical field of representation theory. Representation theory thus reduces the complex study of symmetry in nature to questions in the well understood area of mathematics called linear algebra. As such, the proposed projects have broad potential to substantially impact our understanding of many symmetric structures occurring throughout the mathematical and natural sciences. This project also provides opportunities for directly involving undergraduate students in mathematical research, with a focused goal of supporting the development and recruitment of women in mathematics.This project will address two topics in the algebra, geometry, and representation theory of reductive algebraic groups over non-archimedean local fields. First, applying techniques from geometric group theory to the associated Bruhat-Tits building, the investigator will provide a global approach to understanding the conjugacy classes of any affine Weyl group. Second, this geometric perspective will also be applied to reinterpret the K-theoretic generalization of Peterson's isomorphism from the equivariant homology of the affine Grassmannian to the equivariant quantum cohomology of a finite flag variety. Specific objectives include a complete description of an affine conjugacy class in terms of the underlying finite Weyl group, and new representatives for the Schubert classes in the equivariant K-homology of the affine Grassmannian. As such, the research will stimulate new interactions among the mathematical subfields of representation theory, arithmetic geometry, enumerative geometry, algebraic combinatorics, geometric group theory, and mathematical physics.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
我们在日常生活的几乎每个方面都会遇到对称性:看着镜子中自己的脸,看着雪花从天而降,开车穿过桥梁。 对称生物在自然界的进化中持续存在,对称主角在艺术中被认为特别美丽,对称组件对于能够承受强大力量的工程结构至关重要。特定物理对象的对称性集合具有丰富的代数结构,因为对称性是可以组合在一起的运算。 然后,可以通过将每个对称性编码为称为矩阵的矩形数字数组来方便地研究这组所有对称性。 从自然界中的对称对象到相关矩阵集合的过程是表示论数学领域的标志。因此,表示论将自然界对称性的复杂研究简化为众所周知的数学领域(称为线性代数)中的问题。因此,拟议的项目具有广泛的潜力,可以极大地影响我们对数学和自然科学中出现的许多对称结构的理解。该项目还为本科生直接参与数学研究提供了机会,其重点目标是支持数学领域女性的发展和招募。该项目将讨论代数、几何和非阿基米德局部域上的还原代数群的表示论两个主题。 首先,将几何群论技术应用于相关的 Bruhat-Tits 构建,研究人员将提供一种全局方法来理解任何仿射 Weyl 群的共轭类。 其次,这种几何视角也将用于重新解释彼得森同构的 K 理论推广,从仿射格拉斯曼的等变同调到有限旗簇的等变量子上同调。 具体目标包括根据底层有限 Weyl 群对仿射共轭类的完整描述,以及仿射格拉斯曼的等变 K 同调中舒伯特类的新代表。 因此,该研究将刺激表示论、算术几何、枚举几何、代数组合学、几何群论和数学物理等数学子领域之间的新相互作用。该奖项反映了 NSF 的法定使命,并通过使用基金会的智力价值和更广泛的影响审查标准进行评估,被认为值得支持。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Elizabeth Milicevic其他文献

Elizabeth Milicevic的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Elizabeth Milicevic', 18)}}的其他基金

Mid-Atlantic Algebra, Geometry, and Combinatorics Workshop
中大西洋代数、几何和组合学研讨会
  • 批准号:
    1728937
  • 财政年份:
    2017
  • 资助金额:
    $ 17万
  • 项目类别:
    Continuing Grant
RUI: Affine Flags, p-adic Representations, and Quantum Cohomology
RUI:仿射旗、p-adic 表示和量子上同调
  • 批准号:
    1600982
  • 财政年份:
    2016
  • 资助金额:
    $ 17万
  • 项目类别:
    Standard Grant

相似国自然基金

2019年度国际理论物理中心-ICTP School on Geometry and Gravity (smr 3311)
  • 批准号:
    11981240404
  • 批准年份:
    2019
  • 资助金额:
    1.5 万元
  • 项目类别:
    国际(地区)合作与交流项目
新型IIIB、IVB 族元素手性CGC金属有机化合物(Constrained-Geometry Complexes)的合成及反应性研究
  • 批准号:
    20602003
  • 批准年份:
    2006
  • 资助金额:
    26.0 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

Logarithmic enumerative geometry and moduli spaces
对数枚举几何和模空间
  • 批准号:
    EP/Y037162/1
  • 财政年份:
    2024
  • 资助金额:
    $ 17万
  • 项目类别:
    Research Grant
Computational Tropical Geometry and its Applications
计算热带几何及其应用
  • 批准号:
    MR/Y003888/1
  • 财政年份:
    2024
  • 资助金额:
    $ 17万
  • 项目类别:
    Fellowship
Conference: Collaborative Workshop in Algebraic Geometry
会议:代数几何合作研讨会
  • 批准号:
    2333970
  • 财政年份:
    2024
  • 资助金额:
    $ 17万
  • 项目类别:
    Standard Grant
Discrete Geometry and Convexity
离散几何和凸性
  • 批准号:
    2349045
  • 财政年份:
    2024
  • 资助金额:
    $ 17万
  • 项目类别:
    Standard Grant
RTG: Numbers, Geometry, and Symmetry at Berkeley
RTG:伯克利分校的数字、几何和对称性
  • 批准号:
    2342225
  • 财政年份:
    2024
  • 资助金额:
    $ 17万
  • 项目类别:
    Continuing Grant
Conference: Latin American School of Algebraic Geometry
会议:拉丁美洲代数几何学院
  • 批准号:
    2401164
  • 财政年份:
    2024
  • 资助金额:
    $ 17万
  • 项目类别:
    Standard Grant
Positive and Mixed Characteristic Birational Geometry and its Connections with Commutative Algebra and Arithmetic Geometry
正混合特征双有理几何及其与交换代数和算术几何的联系
  • 批准号:
    2401360
  • 财政年份:
    2024
  • 资助金额:
    $ 17万
  • 项目类别:
    Standard Grant
Spheres of Influence: Arithmetic Geometry and Chromatic Homotopy Theory
影响范围:算术几何和色同伦理论
  • 批准号:
    2401472
  • 财政年份:
    2024
  • 资助金额:
    $ 17万
  • 项目类别:
    Continuing Grant
Postdoctoral Fellowship: MPS-Ascend: Topological Enrichments in Enumerative Geometry
博士后奖学金:MPS-Ascend:枚举几何中的拓扑丰富
  • 批准号:
    2402099
  • 财政年份:
    2024
  • 资助金额:
    $ 17万
  • 项目类别:
    Fellowship Award
CAREER: Large scale geometry and negative curvature
职业:大规模几何和负曲率
  • 批准号:
    2340341
  • 财政年份:
    2024
  • 资助金额:
    $ 17万
  • 项目类别:
    Continuing Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了