SGER: Catalytic Reforming of Electrically Charged Glycerin Nano-droplets to Produce Hydrogen

SGER:带电甘油纳米液滴催化重整产生氢气

基本信息

  • 批准号:
    0708932
  • 负责人:
  • 金额:
    --
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2007
  • 资助国家:
    美国
  • 起止时间:
    2007-04-15 至 2008-09-30
  • 项目状态:
    已结题

项目摘要

Proposal Number: CBET-0708932Principal Investigator: Fernando, Sandun D. Institution: Mississippi State UniversityIn order to address present limitations of catalytic hydrogen production from biomass, there will be investigated an alternative, innovative paradigm where electrically charged viscous liquid droplets will be reformed when they are between 1-100 nm in diameter, i.e, nanophase reforming. The factors impeding development of this technology are the gap in the knowledge of the chemistry that occurs at the positively charged substrate and the negatively charged catalyst/support interface and how viscous nanoscale droplets interact with solids.Both experimental studies and theoretical modeling and simulation will be conducted in an integrated study to understanding this behavior, with the ultimate goal of enhancing the nanophase reforming technique. Renewable raw materials which are CO2 neutral such as lipids, carbohydrates and their derivatives have high molecular weights and are highly viscous and the existing hydrogen production technologies, i.e, steam reforming and aqueous phase reforming (APR), are not highly effective in reforming such fluids. However, APR is advantageous in several ways over steam reforming: APR 1) requires less overall energy by saving the latent heat of vaporization; 2) has the ability to reform at substantially lower temperatures and 3) has the ability to harness the full potential of the water gas shift reaction which is thermodynamically inhibited at steam reforming temperatures. Despite the above advantages, APR is hindered by slow hydrogen production rates mainly due to diffusion resistance around the solid (catalyst) layer. Steam reforming, although it has historically resulted in high hydrogen yields from short chained hydrocarbons, is ineffective in reforming of viscous substrates due to mass transfer limitations associated with changing the state from a liquid (droplets 100 nm) to a gas (particles 1 nm). This leads to our proposed study of catalytic reforming of charged liquid nanodroplets of 1 to 100 nm in diameter. The long-term goal is to develop a reforming technique to produce hydrogen primarily from biorenewable feedstock which has markedly different physiochemical properties than petroleum based hydrocarbons. The objective of this application is to improve the basic understanding of the chemistries involved in catalytic reforming of positively charged substrate droplets over a grounded Ni/carbon-graphite conducting catalyst surface. The central hypothesis of the study is that reforming electrically charged substrate droplets that are between 1-100 nm in diameter can significantly increase substrate conversion in comparison to the conventional APR process. The rationale and the intellectual merit of our hypotheses is that if the reactants are split into finer droplets and electrically charged, the reactant densities could be reduced while allowing the positively charged reactant droplets to be attracted to the negatively charged catalyst support, thus instigating much higher substrate availability at the catalyst active sites than that of APR. We have obtained preliminary data using our electrosplitting device to demonstrate that the production of nanoparticles from highly viscous glycerin is possible. The central hypothesis will be tested by pursuing the following specific aims: 1. Production of glycerin nanoparticles with a consistent profile - Input parameters: fluid flow rate, fluid density, permittivity of free space, surface tension and conductivity properties of the fluid affect the droplet size distribution of the nanospray. A droplet size distribution that consists of 50 nm diameter droplets will be obtained by changing aforementioned parameters. 2. Comparing the hydrogen selectivity, glycerin conversion and byproduct formation - These parameters will be measured for APR, steam reforming and nanophase reforming while keeping catalyst loading, catalyst surface area and feed flow rates constant through out all experimental runs. 3. Proposing reaction mechanisms with the help of product identification in the condensates - The products of the condensate will be analyzed through GCMS, HPLC and LCMS to determine the reaction mechanisms. Quantum chemical calculations will be performed and complementary simulations developed, followed by experimental validation to screen possible catalysts. Depending on these results, another catalyst might be added into the experimental design for a more accurate evaluation of this concept. The results should be applicable to a broad range of other liquid bio-products, such as carbonaceous triglycerides and their derivatives. This research may help broaden the raw material choices available for future hydrogen based energy systems. Research will be incorporated into education, and one doctoral student and one minority and underrepresented student will be trained.
为了解决目前生物质催化制氢的局限性,将研究一种替代的创新范式,即在直径在1-100纳米之间的带电粘性液滴进行重整,即纳米相重整。阻碍这项技术发展的因素是在正电荷衬底和负电荷催化剂/载体界面发生的化学知识的差距,以及粘性纳米级液滴如何与固体相互作用。实验研究和理论建模和模拟将在一个综合的研究中进行,以了解这种行为,最终目标是提高纳米相转化技术。脂类、碳水化合物及其衍生物等CO2中性的可再生原料具有高分子量和高粘性,现有的制氢技术,即蒸汽重整和水相重整(APR),在重整此类流体方面效果不高。然而,与蒸汽重整相比,APR在几个方面是有利的:APR 1)通过节省汽化潜热,需要更少的总能量;2)具有在较低温度下进行重整的能力,3)能够充分利用在蒸汽重整温度下被热力学抑制的水气转换反应的潜力。尽管有上述优点,但由于固体(催化剂)层周围的扩散阻力,导致APR的产氢速率缓慢,从而阻碍了APR的发展。蒸汽重整,虽然它在历史上导致了短链碳氢化合物的高氢产量,但由于从液体(100纳米的液滴)到气体(1纳米的颗粒)状态变化的传质限制,在粘性底物的重整中是无效的。这导致我们提出了催化重整1至100纳米直径的带电液体纳米液滴的研究。长期目标是开发一种重整技术,主要从生物可再生原料中生产氢气,这种原料的物理化学性质与石油基碳氢化合物明显不同。本应用程序的目的是提高对在接地的Ni/碳-石墨导电催化剂表面上催化重整带正电的衬底液滴的化学反应的基本理解。该研究的中心假设是,与传统的APR工艺相比,重组直径在1-100 nm之间的带电衬底液滴可以显著提高衬底转化率。我们假设的基本原理和知识价值在于,如果将反应物分裂成更细的液滴并带电,则可以降低反应物密度,同时允许带正电的反应物液滴被带负电的催化剂载体所吸引。因此,在催化剂活性位点激发了比apr高得多的底物可用性。我们已经使用我们的电分裂装置获得了初步数据,证明了从高粘性甘油中生产纳米颗粒是可能的。中心假设将通过追求以下具体目标来检验:生产具有一致轮廓的甘油纳米颗粒-输入参数:流体流速、流体密度、自由空间介电常数、表面张力和流体的电导率特性影响纳米喷雾的液滴尺寸分布。通过改变上述参数,可以得到由直径为50nm的液滴组成的液滴尺寸分布。2. 比较氢选择性、甘油转化率和副产物生成——这些参数将在APR、蒸汽重整和纳米相重整中进行测量,同时在所有实验运行中保持催化剂负载、催化剂表面积和进料流量恒定。3. 通过凝析油中产物的鉴定提出反应机理。凝析油的产物将通过GCMS、HPLC和LCMS进行分析,以确定反应机理。将进行量子化学计算并开发互补模拟,然后进行实验验证以筛选可能的催化剂。根据这些结果,可能会在实验设计中加入另一种催化剂,以更准确地评估这一概念。该结果应适用于广泛的其他液体生物产品,如碳质甘油三酯及其衍生物。这项研究可能有助于扩大未来氢能源系统的原材料选择。研究将纳入教育,一名博士生和一名少数民族和代表性不足的学生将得到培训。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Sandun Fernando其他文献

Performance of <em>Methylococcus capsulatus</em> based microbial and enzymatic proton exchange membrane fuel cells
  • DOI:
    10.1016/j.renene.2022.06.023
  • 发表时间:
    2022-08-01
  • 期刊:
  • 影响因子:
  • 作者:
    Nalin Samarasinghe;Nicole Longtin;Sandun Fernando
  • 通讯作者:
    Sandun Fernando
Review of the harvesting and extraction program within the National Alliance for Advanced Biofuels and Bioproducts
  • DOI:
    10.1016/j.algal.2017.07.015
  • 发表时间:
    2018-07-01
  • 期刊:
  • 影响因子:
  • 作者:
    Babetta L. Marrone;Ronald E. Lacey;Daniel B. Anderson;James Bonner;Jim Coons;Taraka Dale;Cara Meghan Downes;Sandun Fernando;Christopher Fuller;Brian Goodall;Johnathan E. Holladay;Kiran Kadam;Daniel Kalb;Wei Liu;John B. Mott;Zivko Nikolov;Kimberly L. Ogden;Richard T. Sayre;Brian G. Trewyn;José A. Olivares
  • 通讯作者:
    José A. Olivares
Analysis of <em>Spirulina platensis</em> microalgal fuel cell
  • DOI:
    10.1016/j.jpowsour.2020.229290
  • 发表时间:
    2021-02-28
  • 期刊:
  • 影响因子:
  • 作者:
    Nicole Longtin;Daniela Oliveira;Aishwarya Mahadevan;Varun Gejji;Carmen Gomes;Sandun Fernando
  • 通讯作者:
    Sandun Fernando
Do short sellers amplify extreme market declines?
卖空者会放大极端的市场下跌吗?
  • DOI:
    10.1016/j.pacfin.2024.102498
  • 发表时间:
    2024-10-01
  • 期刊:
  • 影响因子:
    5.300
  • 作者:
    Sandun Fernando;Olena Onishchenko;Duminda Kuruppuarachchi
  • 通讯作者:
    Duminda Kuruppuarachchi

Sandun Fernando的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Sandun Fernando', 18)}}的其他基金

UNS: Enhancing charge transport in enzymatic bio-electrodes using an iron-sulfur-based synthetic electron-transport-chain
UNS:使用铁硫基合成电子传输链增强酶生物电极中的电荷传输
  • 批准号:
    1511303
  • 财政年份:
    2015
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
EAGER: Iron-sulfide based Molecular-wires for Enhancing Charge Transport of Enzymatic Electrode Assemblies
EAGER:基于硫化铁的分子线,用于增强酶电极组件的电荷传输
  • 批准号:
    1243311
  • 财政年份:
    2012
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
Towards Sustainable Hydrocarbon Biorefineries: Deoxygenation of Biomass Oxygenates to Hydrocarbons via Methane
迈向可持续碳氢化合物生物炼制厂:通过甲烷将生物质含氧物脱氧为碳氢化合物
  • 批准号:
    0965772
  • 财政年份:
    2010
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
Heterogeneous Emulsion Catalysis: Transesterification using Amphiphilic Catalysts in Nanoemulsion Environments
多相乳液催化:在纳米乳液环境中使用两亲催化剂进行酯交换反应
  • 批准号:
    0827514
  • 财政年份:
    2008
  • 资助金额:
    --
  • 项目类别:
    Continuing Grant

相似海外基金

Catalytic Tri-reforming of Methane
甲烷催化三重整
  • 批准号:
    569230-2022
  • 财政年份:
    2022
  • 资助金额:
    --
  • 项目类别:
    Alexander Graham Bell Canada Graduate Scholarships - Doctoral
Microwave-assisted catalytic gas reforming technology for clean distributed hydrogen
微波辅助催化气体重整清洁分布式氢技术
  • 批准号:
    570722-2021
  • 财政年份:
    2022
  • 资助金额:
    --
  • 项目类别:
    Alliance Grants
Electrically heated catalytic reforming reactors - eQATOR
电加热催化重整反应器 - eQATOR
  • 批准号:
    10040223
  • 财政年份:
    2022
  • 资助金额:
    --
  • 项目类别:
    EU-Funded
Microwave-assisted catalytic gas reforming technology for clean distributed hydrogen
微波辅助催化气体重整清洁分布式氢技术
  • 批准号:
    570722-2021
  • 财政年份:
    2021
  • 资助金额:
    --
  • 项目类别:
    Alliance Grants
Low temperature removal using catalytic reforming of harmful gases generated in CFRP thermal decomposition
利用催化重整低温去除CFRP热分解产生的有害气体
  • 批准号:
    19K20484
  • 财政年份:
    2019
  • 资助金额:
    --
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
Manufacturing USA: GOALI: Designing Catalytic Membrane Reactors (CMRs) for Low Temperature CO2 Utilization and Methane Dry Reforming
美国制造:GOALI:设计用于低温二氧化碳利用和甲烷干重整的催化膜反应器 (CMR)
  • 批准号:
    1804996
  • 财政年份:
    2018
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
Simultaneous achievement of toxic N-containing compounds removal and syngas recovery via catalytic reforming of product gas from gasfication of N-containing plastic wastes
含氮塑料废物气化产物气催化重整同时实现有毒含氮化合物去除和合成气回收
  • 批准号:
    17K20057
  • 财政年份:
    2017
  • 资助金额:
    --
  • 项目类别:
    Grant-in-Aid for Challenging Research (Exploratory)
Syngas Production Using Catalytic Carbon Dioxide Dry Reforming
使用催化二氧化碳干重整生产合成气
  • 批准号:
    LP150101158
  • 财政年份:
    2016
  • 资助金额:
    --
  • 项目类别:
    Linkage Projects
Steam reforming reaction of aromatic hydrocarbons in unconventional catalytic process
非常规催化过程中芳烃蒸汽重整反应
  • 批准号:
    16J08316
  • 财政年份:
    2016
  • 资助金额:
    --
  • 项目类别:
    Grant-in-Aid for JSPS Fellows
Combination of intramolecular dehydration and catalytic reforming as a method for conversion of bio-oil from cellulose to value-added compounds
分子内脱水和催化重整相结合作为将生物油从纤维素转化为增值化合物的方法
  • 批准号:
    26820345
  • 财政年份:
    2014
  • 资助金额:
    --
  • 项目类别:
    Grant-in-Aid for Young Scientists (B)
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了