Towards Sustainable Hydrocarbon Biorefineries: Deoxygenation of Biomass Oxygenates to Hydrocarbons via Methane

迈向可持续碳氢化合物生物炼制厂:通过甲烷将生物质含氧物脱氧为碳氢化合物

基本信息

项目摘要

0965772FernandoOne of the most important technical challenges in the realization of sustainable hydrocarbon (HC) biorefineries is the removal of oxygen from the feedstock, which typically constitutes up to 35 wt% of lignocellulosic biomass. The closest technologies for deoxygenation, hydrodeoxygenation and hydrocracking, are estimated to use approximately 66 kg of hydrogen per metric ton of biomass. This hydrogen gas need affects the long-term sustainability of HC biorefineries. Consequently, there is need for an effective and a sustainable mechanism to remove oxygen from biorenewable feedstocks.Methane is a hydrogen-rich gas which can be produced by sustainable processes. The overall objective of this proposal is to understand the fundamental catalytic processes that occur when methane contacts biomass-derived oxygenates on bi-functional catalysts under pyrolysis conditions.Intellectual MeritThe possibility of kinetically coupling a hydrogen-consuming reaction with a concurrent hydrogen-producing reaction is the basis for oxygen-rich biomass feedstock deoxygenation. Specifically, aromatization of biomass-derived oxygenates is the hydrogen consuming reaction. During this process, benzene, toluene and xylene (BTX) are typically formed by dehydration reactions, which produce water as byproduct. The hydrogen producing reactions are methane steam reforming and methane aromatization.It is hypothesized that methane can be directly coupled with biomass-derived pyrolytic vapors (oxygenates) and deoxygenated into hydrocarbons over an appropriate metal supported ZSM-5 bi-functional catalyst via two pathways: (1) methane steam reforming and oxygenate aromatization, or (2) methane aromatization and oxygenate aromatization. In the first coupling reaction, hydrogen gas formed during methane steam reforming is used for the aromatization of oxygenates. Water formed during oxygenate aromatization via dehydration is used for methane steam reforming. The ultimate products of this coupling reaction are hydrocarbons and carbon dioxide. In the second coupling reaction, methane is aromatized to produce BTX (benzene, toluene, xylene) and hydrogen gas. Oxygenates utilize the hydrogen formed and aromatize by dehydration, removing oxygen as water.In the proposed research, the reactions that occur between methane and the model oxygenate glucose in the presence of selected bi-functional catalysts that contain metals (Sn, Ni, Ce, Ru or Mo2C) on ZSM-5 catalysts will be elucidated. Candidate bi-functional catalysts identified by this model study will then be used to explore the spectrum of hydrocarbon products generated when when biomass constituents (cellulose, lignin, solid biomass and bio-oil) are catalytically pyrolyzed in the presence of methane.This research will provide fundamental understanding on the chemistry that occurs at a catalyst surface when an oxygen-rich substrate and methane - an oxygen-deficient, hydrogen-rich substrate that is historically difficult to activate - are brought together. The research is potentially transformative because it suggests a new route to produce hydrocarbons from biomass that does not require hydrogen. The research has practical implications, because existing petroleum refinery infrastructure could be used to formulate commercially valuable hydrocarbons from biomass.Broader ImpactsIn addition to the training of graduate students, the education and outreach plan focuses on undergraduate student teaching and learning in a hands-on research environment. Specifically, the proposed education activities feature the development of the REACH program (Research Experiences for the Academically Challenged). In the proposed REACH program, students from under-represented groups who are academically at risk (2.5 GPA) are paired with students who are not at risk. This team is provided with hands-on research experiences early in their undergraduate program. The academic progress of these students will be tracked during the course of their undergraduate career to evaluate whether or not exposing them early on to hand-on research in this team environment helps stimulate their excitement towards learning and promotes their retention in engineering programs.
实现可持续碳氢化合物(HC)生物精炼厂最重要的技术挑战之一是从原料中去除氧,这通常构成高达35%的木质纤维素生物质。最接近的脱氧技术,加氢脱氧和加氢裂化,估计每公吨生物质使用大约66公斤的氢。这种氢气需求影响HC生物精炼厂的长期可持续性。因此,需要一种有效和可持续的机制来从生物可再生原料中去除氧气。甲烷是一种富氢气体,可以通过可持续的工艺生产。本提案的总体目标是了解在热解条件下,双功能催化剂上甲烷与生物质衍生的氧合物接触时发生的基本催化过程。一个耗氢反应和一个同时发生的产氢反应的动力学耦合的可能性是富氧生物质原料脱氧的基础。具体来说,生物质衍生的含氧化合物的芳构化是一个耗氢反应。在这一过程中,苯、甲苯和二甲苯(BTX)通常通过脱水反应形成,产生水作为副产物。产氢反应有甲烷蒸汽重整反应和甲烷芳构化反应。假设甲烷可以直接与生物质热解蒸汽(氧合物)偶联,并在合适的金属负载的ZSM-5双功能催化剂上通过两种途径(1)甲烷蒸汽重整和氧合物芳构化,或(2)甲烷芳构化和氧合物芳构化。在第一次偶联反应中,甲烷蒸汽重整过程中产生的氢气用于含氧化合物的芳构化。脱水氧化芳构化过程中形成的水用于甲烷蒸汽重整。这种偶联反应的最终产物是碳氢化合物和二氧化碳。在第二次偶联反应中,甲烷被芳构化生成BTX(苯、甲苯、二甲苯)和氢气。氧合物利用脱水形成的氢和芳构化,以水的形式除去氧。在提出的研究中,将阐明在ZSM-5催化剂上选择含有金属(Sn, Ni, Ce, Ru或Mo2C)的双功能催化剂存在下甲烷和模型氧合葡萄糖之间发生的反应。通过该模型研究确定的候选双功能催化剂将用于探索生物质成分(纤维素、木质素、固体生物质和生物油)在甲烷存在下催化热解时产生的碳氢化合物产物的光谱。这项研究将对富氧底物和甲烷(一种缺氧、富氢的底物,历来难以激活)结合在一起时催化剂表面发生的化学反应提供基本的理解。这项研究具有潜在的变革性,因为它提出了一条从生物质中生产碳氢化合物的新途径,而不需要氢气。这项研究具有实际意义,因为现有的炼油厂基础设施可以用来从生物质中提炼有商业价值的碳氢化合物。更广泛的影响除了培养研究生外,教育和推广计划还侧重于本科生在实践研究环境中的教学和学习。具体而言,拟议的教育活动以REACH计划(学术挑战研究经验)的发展为特色。在拟议的REACH计划中,来自学业上有风险(GPA为2.5)的代表性不足群体的学生与没有风险的学生配对。这个团队在本科课程的早期就获得了实践研究经验。这些学生的学术进步将在他们的本科生涯中被跟踪,以评估是否让他们在这个团队环境中早期接触动手研究有助于激发他们对学习的热情,并促进他们留在工程项目中。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Sandun Fernando其他文献

Performance of <em>Methylococcus capsulatus</em> based microbial and enzymatic proton exchange membrane fuel cells
  • DOI:
    10.1016/j.renene.2022.06.023
  • 发表时间:
    2022-08-01
  • 期刊:
  • 影响因子:
  • 作者:
    Nalin Samarasinghe;Nicole Longtin;Sandun Fernando
  • 通讯作者:
    Sandun Fernando
Review of the harvesting and extraction program within the National Alliance for Advanced Biofuels and Bioproducts
  • DOI:
    10.1016/j.algal.2017.07.015
  • 发表时间:
    2018-07-01
  • 期刊:
  • 影响因子:
  • 作者:
    Babetta L. Marrone;Ronald E. Lacey;Daniel B. Anderson;James Bonner;Jim Coons;Taraka Dale;Cara Meghan Downes;Sandun Fernando;Christopher Fuller;Brian Goodall;Johnathan E. Holladay;Kiran Kadam;Daniel Kalb;Wei Liu;John B. Mott;Zivko Nikolov;Kimberly L. Ogden;Richard T. Sayre;Brian G. Trewyn;José A. Olivares
  • 通讯作者:
    José A. Olivares
Analysis of <em>Spirulina platensis</em> microalgal fuel cell
  • DOI:
    10.1016/j.jpowsour.2020.229290
  • 发表时间:
    2021-02-28
  • 期刊:
  • 影响因子:
  • 作者:
    Nicole Longtin;Daniela Oliveira;Aishwarya Mahadevan;Varun Gejji;Carmen Gomes;Sandun Fernando
  • 通讯作者:
    Sandun Fernando
Do short sellers amplify extreme market declines?
卖空者会放大极端的市场下跌吗?
  • DOI:
    10.1016/j.pacfin.2024.102498
  • 发表时间:
    2024-10-01
  • 期刊:
  • 影响因子:
    5.300
  • 作者:
    Sandun Fernando;Olena Onishchenko;Duminda Kuruppuarachchi
  • 通讯作者:
    Duminda Kuruppuarachchi

Sandun Fernando的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Sandun Fernando', 18)}}的其他基金

UNS: Enhancing charge transport in enzymatic bio-electrodes using an iron-sulfur-based synthetic electron-transport-chain
UNS:使用铁硫基合成电子传输链增强酶生物电极中的电荷传输
  • 批准号:
    1511303
  • 财政年份:
    2015
  • 资助金额:
    $ 31.83万
  • 项目类别:
    Standard Grant
EAGER: Iron-sulfide based Molecular-wires for Enhancing Charge Transport of Enzymatic Electrode Assemblies
EAGER:基于硫化铁的分子线,用于增强酶电极组件的电荷传输
  • 批准号:
    1243311
  • 财政年份:
    2012
  • 资助金额:
    $ 31.83万
  • 项目类别:
    Standard Grant
Heterogeneous Emulsion Catalysis: Transesterification using Amphiphilic Catalysts in Nanoemulsion Environments
多相乳液催化:在纳米乳液环境中使用两亲催化剂进行酯交换反应
  • 批准号:
    0827514
  • 财政年份:
    2008
  • 资助金额:
    $ 31.83万
  • 项目类别:
    Continuing Grant
SGER: Catalytic Reforming of Electrically Charged Glycerin Nano-droplets to Produce Hydrogen
SGER:带电甘油纳米液滴催化重整产生氢气
  • 批准号:
    0708932
  • 财政年份:
    2007
  • 资助金额:
    $ 31.83万
  • 项目类别:
    Standard Grant

相似海外基金

Homogeneous hydrocarbon oxidation using nitrous oxide as a sustainable feedstock
使用一氧化二氮作为可持续原料进行均相烃氧化
  • 批准号:
    2881399
  • 财政年份:
    2023
  • 资助金额:
    $ 31.83万
  • 项目类别:
    Studentship
CAS: CAREER: Light-Initiated C-H Functionalization by Metal Oxo Complexes for Sustainable Light Hydrocarbon Upgrading
CAS:事业:通过金属氧配合物进行光引发的 C-H 官能化,实现可持续轻质烃升级
  • 批准号:
    2238488
  • 财政年份:
    2023
  • 资助金额:
    $ 31.83万
  • 项目类别:
    Continuing Grant
Investigating Multiphase Flow in Shales by Measuring Relative Permeabilities for Sustainable Hydrocarbon Recovery
通过测量相对渗透率研究页岩中的多相流以实现可持续碳氢化合物采收
  • 批准号:
    RGPIN-2020-05376
  • 财政年份:
    2022
  • 资助金额:
    $ 31.83万
  • 项目类别:
    Discovery Grants Program - Individual
Investigating Multiphase Flow in Shales by Measuring Relative Permeabilities for Sustainable Hydrocarbon Recovery
通过测量相对渗透率研究页岩中的多相流以实现可持续碳氢化合物采收
  • 批准号:
    RGPIN-2020-05376
  • 财政年份:
    2021
  • 资助金额:
    $ 31.83万
  • 项目类别:
    Discovery Grants Program - Individual
Investigating Multiphase Flow in Shales by Measuring Relative Permeabilities for Sustainable Hydrocarbon Recovery
通过测量相对渗透率研究页岩中的多相流以实现可持续碳氢化合物采收
  • 批准号:
    RGPIN-2020-05376
  • 财政年份:
    2020
  • 资助金额:
    $ 31.83万
  • 项目类别:
    Discovery Grants Program - Individual
Materials for Selective and Sustainable HydroCarbon Removal from Water
用于选择性和可持续去除水中碳氢化合物的材料
  • 批准号:
    430901937
  • 财政年份:
    2019
  • 资助金额:
    $ 31.83万
  • 项目类别:
    Research Grants
In vivo alpha-olefin production: a sustainable hydrocarbon source
体内α-烯烃生产:可持续的碳氢化合物来源
  • 批准号:
    BB/K017802/1
  • 财政年份:
    2013
  • 资助金额:
    $ 31.83万
  • 项目类别:
    Research Grant
EAGER: Lignin as a Sustainable Resource for Hydrocarbon-Like Transportation Fuels
EAGER:木质素作为类碳氢化合物运输燃料的可持续资源
  • 批准号:
    1250663
  • 财政年份:
    2012
  • 资助金额:
    $ 31.83万
  • 项目类别:
    Standard Grant
SEP: Sustainable Forest-Based Biofuel Pathways to Hydrocarbon Transportation Fuels: Biomass Production, Torrefaction, Pyrolysis, Catalytic Upgrading, and Combustion
SEP:碳氢化合物运输燃料的可持续森林生物燃料途径:生物质生产、烘焙、热解、催化升级和燃烧
  • 批准号:
    1230803
  • 财政年份:
    2012
  • 资助金额:
    $ 31.83万
  • 项目类别:
    Standard Grant
Sustainable carbon cycle toward mitigation of carbon dioxide emission and regeneration of hydrocarbon resources
可持续碳循环,以减少二氧化碳排放和碳氢化合物资源再生
  • 批准号:
    17206090
  • 财政年份:
    2005
  • 资助金额:
    $ 31.83万
  • 项目类别:
    Grant-in-Aid for Scientific Research (A)
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了