III-CXT: Collaborative Research: A High-Throughput Approach to the Assignment of Orthologous Genes Based on Genome Rearrangement

III-CXT:协作研究:基于基因组重排的直系同源基因分配的高通量方法

基本信息

项目摘要

Abstract Orthologous genes, or orthologs, are genes in different species that have evolved directly from a common ancestral gene. Genome-scale assignment of orthologs is a fundamental and challenging problem in computational biology, and has a wide range of applications in comparative genomics and functional genomics. This project continues the development of the parsimony approach for assigning orthologs between closely related genomes which essentially attempts to transform one genome into another by the smallest number of genome rearrangement events including reversal, translocation, fusion, and fission, as well as gene duplication events. The project addresses three key algorithmic problems including (i) signed reversal distance with duplicates, (ii) signed transposition distance with duplicates, and (iii) minimum common string partition. Efficient solutions to each of these problems are combined and incorporated into a software system for ortholog assignment, called MSOAR. The project encompasses genome-wide analysis of orthologous (and paralogous) relationships on the human and mouse genomes to valdiate the approach, and more importantly, to address several important evolutionary biological questions including the characterization of gains and losses of duplicated genes in the two genomes, the elucidation of gene movements in one genome with respect to the other genome, and the quantification of different mechanisms of gene duplication. Intellectual merit. The parsimony approach presents a novel method for performing genome-wide ortholog assignment that takes into account both gene sequences and locations. The above algorithmic problems are new in the literature and their solutions likely require the introduction of novel algorithm design and analysis techniques. The questions regarding gene duplication and quantification of the duplication mechanisms in model species are of fundamental importance in evolutionary biology. Broader impact. As ortholog assignment is a fundamental problem in comparative genomics and has become a routine practice in almost all areas of genomics, MSOAR will find itself a wide range of applications in biology and genomics. Moreover, the research will provide the training opportunity for two computer science graduate students in the interdisciplinary field of computational biology. Information concerning this NSF project will be provided at the website: http://msoar.cs.ucr.edu/
摘要 直向同源基因,或直向同源物,是不同物种中直接从共同祖先基因进化而来的基因。直向同源物的基因组规模分配是计算生物学中的一个基本且具有挑战性的问题,并且在比较基因组学和功能基因组学中具有广泛的应用。该项目继续开发用于在密切相关的基因组之间分配直系同源物的简约方法,该方法本质上试图通过最少数量的基因组重排事件(包括逆转、易位、融合和裂变以及基因复制事件)将一个基因组转化为另一个基因组。该项目解决了三个关键算法问题,包括(i)具有重复项的有符号反转距离,(ii)具有重复项的有符号转置距离,以及(iii)最小公共字符串分区。这些问题的有效解决方案被组合并纳入一个用于直向同源分配的软件系统中,称为 MSOAR。该项目包括对人类和小鼠基因组上的直系同源(和旁系同源)关系进行全基因组分析,以验证该方法,更重要的是,解决几个重要的进化生物学问题,包括两个基因组中重复基因的获得和丢失的特征,阐明一个基因组相对于另一个基因组的基因运动,以及不同基因复制机制的量化。智力上的优点。简约方法提出了一种执行全基因组直系同源分配的新方法,该方法考虑了基因序列和位置。上述算法问题在文献中是新的,它们的解决方案可能需要引入新颖的算法设计和分析技术。关于模型物种中基因复制和复制机制量化的问题在进化生物学中具有根本重要性。更广泛的影响。由于直系同源分配是比较基因组学中的一个基本问题,并且已成为几乎所有基因组学领域的常规实践,因此 MSOAR 将在生物学和基因组学中得到广泛的应用。此外,该研究还将为两名计算机科学研究生提供计算生物学跨学科领域的培训机会。有关该 NSF 项目的信息将在网站上提供:http://msoar.cs.ucr.edu/

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Liqing Zhang其他文献

Age Classification System with ICA Based Local Facial Features
基于 ICA 局部面部特征的年龄分类系统
Robust Auditory-Based Speech Feature Extraction Using Independent Subspace Method
使用独立子空间方法进行稳健的基于听觉的语音特征提取
  • DOI:
    10.1007/978-1-4020-8387-7_69
  • 发表时间:
    2008
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Qiang Wu;Liqing Zhang;Bin Xia
  • 通讯作者:
    Bin Xia
Optimizing a Cost Matrix to Solve Rare-Class Biological Problems
优化成本矩阵来解决稀有生物问题
  • DOI:
  • 发表时间:
    2011
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Mark J. Lawson;Lenwood S. Heath;Hanchi Zhao;Liqing Zhang
  • 通讯作者:
    Liqing Zhang
SJTUBCMI at TRECVID 2012: Surveillance Event Detection
SJTUBCMI 参加 TRECVID 2012:监控事件检测
  • DOI:
  • 发表时间:
    2012
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Keting Zhang;Wei Shi;Yangwei Wu;Liqing Zhang
  • 通讯作者:
    Liqing Zhang
Replenishing connectedness: reminders of social activity reduce aggression after social exclusion.
补充联系:社交活动的提醒可以减少社会排斥后的攻击性。
  • DOI:
    10.1348/014466605x90793
  • 发表时间:
    2007
  • 期刊:
  • 影响因子:
    0
  • 作者:
    J. Twenge;Liqing Zhang;Kathleen R. Catanese;Brenda Dolan;L. F. Lyche;R. Baumeister
  • 通讯作者:
    R. Baumeister

Liqing Zhang的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Liqing Zhang', 18)}}的其他基金

Collaborative Research: URoL:ASC: Using the Rules of Antibiotic Resistance Development to Inform Wastewater Mitigation Strategies
合作研究:URoL:ASC:利用抗生素耐药性发展规则为废水减排策略提供信息
  • 批准号:
    2319522
  • 财政年份:
    2023
  • 资助金额:
    $ 19万
  • 项目类别:
    Standard Grant
Frameworks: Developing CyberInfrastructure for Waterborne Antibiotic Resistance Risk Surveillance (CI4-WARS)
框架:开发水性抗生素耐药性风险监测网络基础设施 (CI4-WARS)
  • 批准号:
    2004751
  • 财政年份:
    2020
  • 资助金额:
    $ 19万
  • 项目类别:
    Standard Grant

相似国自然基金

吩嗪类化合物CXT-A3对乳腺癌干细胞的抑制作用及机制研究
  • 批准号:
  • 批准年份:
    2021
  • 资助金额:
    55 万元
  • 项目类别:
    面上项目

相似海外基金

III-CXT-Small: Collaborative Research: Automatic Geomorphic Mapping and Analysis of Land Surfaces Using Pattern Recognition
III-CXT-Small:协作研究:利用模式识别自动地貌测绘和地表分析
  • 批准号:
    1103684
  • 财政年份:
    2010
  • 资助金额:
    $ 19万
  • 项目类别:
    Standard Grant
III-CXT-Medium: Collaborative Research: Inference of Complex Genealogical Histories in Populations: Algorithms and Applications
III-CXT-Medium:协作研究:群体中复杂谱系历史的推断:算法和应用
  • 批准号:
    0803440
  • 财政年份:
    2008
  • 资助金额:
    $ 19万
  • 项目类别:
    Standard Grant
III-CXT-Small: Collaborative Research: REGNET - Information Management and Compliance Assistance for Patent Laws and Regulations
III-CXT-Small:合作研究:REGNET - 专利法律法规的信息管理和合规协助
  • 批准号:
    0811460
  • 财政年份:
    2008
  • 资助金额:
    $ 19万
  • 项目类别:
    Standard Grant
III-CXT-Small: Collaborative Research: Automatic Geomorphic Mapping and Analysis of Land Surfaces Using Pattern Recognition
III-CXT-Small:协作研究:利用模式识别自动地貌测绘和地表分析
  • 批准号:
    0812271
  • 财政年份:
    2008
  • 资助金额:
    $ 19万
  • 项目类别:
    Standard Grant
III-CXT-Small: Collaborative Research: Automatic Geomorphic Mapping and Analysis of Land Surfaces Using Pattern Recognition
III-CXT-Small:协作研究:利用模式识别自动地貌测绘和地表分析
  • 批准号:
    0812372
  • 财政年份:
    2008
  • 资助金额:
    $ 19万
  • 项目类别:
    Standard Grant
III-CXT-Small: Collaborative Research: Structuring, Reasoning, and Querying in a Very Large Medical Image Database
III-CXT-Small:协作研究:在超大型医学图像数据库中构建、推理和查询
  • 批准号:
    0812073
  • 财政年份:
    2008
  • 资助金额:
    $ 19万
  • 项目类别:
    Continuing Grant
III-CXT-Small: Collaborative Research: Structuring, Reasoning, and Querying in a Very Large Medical Image Database
III-CXT-Small:协作研究:在超大型医学图像数据库中构建、推理和查询
  • 批准号:
    0854606
  • 财政年份:
    2008
  • 资助金额:
    $ 19万
  • 项目类别:
    Continuing Grant
III-CXT-Large: Collaborative Research: Interactive and Intelligent searching of biological images by query and network navigation with learning capabilities.
III-CXT-Large:协作研究:通过具有学习功能的查询和网络导航对生物图像进行交互式和智能搜索。
  • 批准号:
    0808661
  • 财政年份:
    2008
  • 资助金额:
    $ 19万
  • 项目类别:
    Standard Grant
III-CXT-Large: Collaborative Research: Interactive and intelligent searching of biological images by query and network navigation with learning capabilities
III-CXT-Large:协作研究:通过具有学习能力的查询和网络导航对生物图像进行交互式和智能搜索
  • 批准号:
    0808624
  • 财政年份:
    2008
  • 资助金额:
    $ 19万
  • 项目类别:
    Standard Grant
III-CXT-Small: Collaborative Research: Structuring, Reasoning, and Querying
III-CXT-Small:协作研究:结构化、推理和查询
  • 批准号:
    0812124
  • 财政年份:
    2008
  • 资助金额:
    $ 19万
  • 项目类别:
    Continuing Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了