III-CXT-Small: Collaborative Research: Structuring, Reasoning, and Querying in a Very Large Medical Image Database

III-CXT-Small:协作研究:在超大型医学图像数据库中构建、推理和查询

基本信息

  • 批准号:
    0812073
  • 负责人:
  • 金额:
    $ 5.45万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2008
  • 资助国家:
    美国
  • 起止时间:
    2008-09-01 至 2008-10-31
  • 项目状态:
    已结题

项目摘要

Image data is of immense practical importance in medical informatics, and a subject of strong interest to researchers in industry and academia. While digital image databases are now prevalent in clinical and educational settings, and traditional means for interacting with and querying such collections can provide some level of useful functionality, there are few examples of systems that attempt to bridge the ?semantic gap.? The work proposed in this grant is a multi-institutional collaboration combining research in medical image processing, machine learning and pattern recognition, knowledge representation and querying, and evaluation by domain experts in the field, is intended to advance the state-of-the-art in this direction. The archive of 60,000 cervigram images assembled by the National Library of Medicine and National Cancer Institute is an ideal collection for this purpose. The NLM cervigram archive forms a narrow image domain that has a limited and predictable variability. In such cases, explicit representation of domain knowledge alleviates the semantic gap between the low-level sensory recordings of a scene (raw image data), and objects and processes implied from images (semantic interpretation). This research will follow an information hierarchy that proceeds from raw image data to low-level image features, recognition of objects and tissue types, knowledge-based reasoning about disease processes, and, finally, tools and visualizations to support diagnosis decisions by clinical and NLM/NCI collaborators. The research team will employ an underlying paradigm known as Computer-Assisted Visual Interactive Recognition, or CAVIAR, which considers the domain expert an integral part of the equation and attempts to optimize the performance of the complete human-machine system. Intellectual Merit Image content understanding is still considered a vexing open problem at the same time databases are growing rapidly in size and complexity. It is anticipated that this work will have a positive impact in areas relating to medical image analysis, including information extraction, organization, representation, and querying, as well as in training. Broader Impact Through the focus on the NLM/NCI cervigram archive, this research may help advance the role of cervicography as a more cost-effective procedure than pap smears and colposcopy in screening for cervical cancer. Results from this targeted-domain project could also illuminate gaps and help establish new priorities for research in broader domains such as multimedia content structuring, understanding, indexing, and retrieval.
图像数据在医学信息学中具有巨大的实际重要性,也是工业界和学术界研究人员浓厚兴趣的主题。虽然数字图像数据库现在在临床和教育环境中很普遍,并且与此类集合交互和查询的传统方法可以提供一定程度的有用功能,但尝试弥合“语义差距”的系统示例很少。这项资助提出的工作是一项多机构合作,结合了医学图像处理、机器学习和模式识别、知识表示和查询以及领域专家评估方面的研究,旨在推进这一方向的最新技术。国家医学图书馆和国家癌症研究所收集的 60,000 张宫​​颈照片档案是实现此目的的理想收藏。 NLM 宫颈图档案形成了一个狭窄的图像域,具有有限且可预测的变异性。在这种情况下,领域知识的显式表示减轻了场景的低级感知记录(原始图像数据)与图像隐含的对象和过程(语义解释)之间的语义差距。这项研究将遵循一个信息层次结构,从原始图像数据到低级图像特征、物体和组织类型的识别、关于疾病过程的基于知识的推理,最后是支持临床和 NLM/NCI 合作者诊断决策的工具和可视化。研究团队将采用一种称为计算机辅助视觉交互识别(CAVIAR)的基础范例,该范例将领域专家视为方程式的组成部分,并尝试优化整个人机系统的性能。智力优点图像内容理解仍然被认为是一个令人烦恼的开放问题,同时数据库的规模和复杂性正在迅速增长。预计这项工作将对医学图像分析相关领域产生积极影响,包括信息提取、组织、表示和查询以及培训。更广泛的影响 通过关注 NLM/NCI 宫颈造影档案,这项研究可能有助于提升宫颈造影的作用,使其成为比子宫颈抹片检查和阴道镜检查更具成本效益的宫颈癌筛查程序。这个目标领域项目的结果还可以阐明差距,并帮助在更广泛的领域(例如多媒体内容结构化、理解、索引和检索)建立新的研究重点。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Gang Tan其他文献

Structural Optimization of Heat Sink for Thermoelectric Conversion Unit in Personal Comfort System
个人舒适系统热电转换单元散热器结构优化
  • DOI:
    10.3390/en15082781
  • 发表时间:
    2022-04
  • 期刊:
  • 影响因子:
    3.2
  • 作者:
    Wenping Xue;Xiao Cao;Guangfa Zhang;Gang Tan;Zilong Liu;Kangji Li
  • 通讯作者:
    Kangji Li
A state of the art review on the prediction of building energy consumption using data-driven technique and evolutionary algorithms
使用数据驱动技术和进化算法预测建筑能耗的最新技术综述
Certified Parsing of Dependent Regular Grammars
依赖正则语法的认证解析
Quantifying and Mitigating Cache Side Channel Leakage with Differential Set
使用差分集量化和减轻缓存侧通道泄漏
Advances in icephobic coatings: Concepts, mechanisms, classifications and prospects
防冰涂层的进展:概念、机制、分类和前景
  • DOI:
    10.1016/j.coldregions.2025.104596
  • 发表时间:
    2025-11-01
  • 期刊:
  • 影响因子:
    3.800
  • 作者:
    Yanlong Zhan;Zhenqian Pang;Gang Tan
  • 通讯作者:
    Gang Tan

Gang Tan的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Gang Tan', 18)}}的其他基金

Collaborative Research: SaTC: CORE: Small: Detecting and Localizing Non-Functional Vulnerabilities in Machine Learning Libraries
协作研究:SaTC:核心:小型:检测和本地化机器学习库中的非功能性漏洞
  • 批准号:
    2230061
  • 财政年份:
    2023
  • 资助金额:
    $ 5.45万
  • 项目类别:
    Standard Grant
SaTC: CORE: Small: Precise and Robust Binary Reverse Engineering and its Applications
SaTC:核心:小型:精确而鲁棒的二进制逆向工程及其应用
  • 批准号:
    2243632
  • 财政年份:
    2023
  • 资助金额:
    $ 5.45万
  • 项目类别:
    Standard Grant
CAPA: Collaborative Research: Lightweight Abstract Memory Features
CAPA:协作研究:轻量级抽象内存功能
  • 批准号:
    1723571
  • 财政年份:
    2017
  • 资助金额:
    $ 5.45万
  • 项目类别:
    Continuing Grant
CAREER: User-Space Protection Domains for Compositional Information Security
职业:组合信息安全的用户空间保护域
  • 批准号:
    1624124
  • 财政年份:
    2016
  • 资助金额:
    $ 5.45万
  • 项目类别:
    Continuing Grant
SHF: Small: Collaborative Research: Reusable Tools for Formal Modeling of Machine Code
SHF:小型:协作研究:用于机器代码形式化建模的可重用工具
  • 批准号:
    1624125
  • 财政年份:
    2016
  • 资助金额:
    $ 5.45万
  • 项目类别:
    Standard Grant
TWC: Medium: Collaborative: Retrofitting Software for Defense-in-Depth
TWC:中:协作:改进纵深防御软件
  • 批准号:
    1624126
  • 财政年份:
    2016
  • 资助金额:
    $ 5.45万
  • 项目类别:
    Standard Grant
TWC: Medium: Collaborative: Retrofitting Software for Defense-in-Depth
TWC:中:协作:改进纵深防御软件
  • 批准号:
    1408826
  • 财政年份:
    2014
  • 资助金额:
    $ 5.45万
  • 项目类别:
    Standard Grant
SHF: Small: Collaborative Research: Reusable Tools for Formal Modeling of Machine Code
SHF:小型:协作研究:用于机器代码形式化建模的可重用工具
  • 批准号:
    1217710
  • 财政年份:
    2012
  • 资助金额:
    $ 5.45万
  • 项目类别:
    Standard Grant
CAREER: User-Space Protection Domains for Compositional Information Security
职业:组合信息安全的用户空间保护域
  • 批准号:
    1149211
  • 财政年份:
    2012
  • 资助金额:
    $ 5.45万
  • 项目类别:
    Continuing Grant
TC: Small: Collaborative Research: Securing Multilingual Software Systems
TC:小型:协作研究:保护多语言软件系统
  • 批准号:
    0915157
  • 财政年份:
    2009
  • 资助金额:
    $ 5.45万
  • 项目类别:
    Standard Grant

相似国自然基金

吩嗪类化合物CXT-A3对乳腺癌干细胞的抑制作用及机制研究
  • 批准号:
  • 批准年份:
    2021
  • 资助金额:
    55 万元
  • 项目类别:
    面上项目

相似海外基金

III-CXT-Small: Information Discovery on Domain Data Graphs
III-CXT-Small:领域数据图上的信息发现
  • 批准号:
    1216032
  • 财政年份:
    2011
  • 资助金额:
    $ 5.45万
  • 项目类别:
    Standard Grant
III-CXT-Small: Collaborative Research: Automatic Geomorphic Mapping and Analysis of Land Surfaces Using Pattern Recognition
III-CXT-Small:协作研究:利用模式识别自动地貌测绘和地表分析
  • 批准号:
    1103684
  • 财政年份:
    2010
  • 资助金额:
    $ 5.45万
  • 项目类别:
    Standard Grant
III-CXT-Small: Information Discovery on Domain Data Graphs
III-CXT-Small:领域数据图上的信息发现
  • 批准号:
    0811922
  • 财政年份:
    2008
  • 资助金额:
    $ 5.45万
  • 项目类别:
    Standard Grant
III-CXT-Small: Collaborative Research: REGNET - Information Management and Compliance Assistance for Patent Laws and Regulations
III-CXT-Small:合作研究:REGNET - 专利法律法规的信息管理和合规协助
  • 批准号:
    0811460
  • 财政年份:
    2008
  • 资助金额:
    $ 5.45万
  • 项目类别:
    Standard Grant
III-CXT-Small: Collaborative Research: Automatic Geomorphic Mapping and Analysis of Land Surfaces Using Pattern Recognition
III-CXT-Small:协作研究:利用模式识别自动地貌测绘和地表分析
  • 批准号:
    0812271
  • 财政年份:
    2008
  • 资助金额:
    $ 5.45万
  • 项目类别:
    Standard Grant
III-CXT-Small: Collaborative Research: Automatic Geomorphic Mapping and Analysis of Land Surfaces Using Pattern Recognition
III-CXT-Small:协作研究:利用模式识别自动地貌测绘和地表分析
  • 批准号:
    0812372
  • 财政年份:
    2008
  • 资助金额:
    $ 5.45万
  • 项目类别:
    Standard Grant
III-CXT-Small: Collaborative Research: Structuring, Reasoning, and Querying in a Very Large Medical Image Database
III-CXT-Small:协作研究:在超大型医学图像数据库中构建、推理和查询
  • 批准号:
    0854606
  • 财政年份:
    2008
  • 资助金额:
    $ 5.45万
  • 项目类别:
    Continuing Grant
III-CXT-Small: Algorithmic strategies for genotype-phenotype correlations
III-CXT-Small:基因型-表型相关性的算法策略
  • 批准号:
    0810905
  • 财政年份:
    2008
  • 资助金额:
    $ 5.45万
  • 项目类别:
    Standard Grant
III-CXT-Small: Graphs to Diversity: extracting genomic variation from sequence graphs
III-CXT-Small:多样性图表:从序列图中提取基因组变异
  • 批准号:
    0812111
  • 财政年份:
    2008
  • 资助金额:
    $ 5.45万
  • 项目类别:
    Continuing Grant
III-CXT-Small: Collaborative Research: Structuring, Reasoning, and Querying
III-CXT-Small:协作研究:结构化、推理和查询
  • 批准号:
    0812124
  • 财政年份:
    2008
  • 资助金额:
    $ 5.45万
  • 项目类别:
    Continuing Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了