III-CXT-Small: Collaborative Research: Structuring, Reasoning, and Querying in a Very Large Medical Image Database

III-CXT-Small:协作研究:在超大型医学图像数据库中构建、推理和查询

基本信息

  • 批准号:
    0854606
  • 负责人:
  • 金额:
    $ 5.45万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2008
  • 资助国家:
    美国
  • 起止时间:
    2008-09-01 至 2011-08-31
  • 项目状态:
    已结题

项目摘要

Image data is of immense practical importance in medical informatics, and a subject of strong interest to researchers in industry and academia. While digital image databases are now prevalent in clinical and educational settings, and traditional means for interacting with and querying such collections can provide some level of useful functionality, there are few examples of systems that attempt to bridge the ?semantic gap.? The work proposed in this grant is a multi-institutional collaboration combining research in medical image processing, machine learning and pattern recognition, knowledge representation and querying, and evaluation by domain experts in the field, is intended to advance the state-of-the-art in this direction. The archive of 60,000 cervigram images assembled by the National Library of Medicine and National Cancer Institute is an ideal collection for this purpose. The NLM cervigram archive forms a narrow image domain that has a limited and predictable variability. In such cases, explicit representation of domain knowledge alleviates the semantic gap between the low-level sensory recordings of a scene (raw image data), and objects and processes implied from images (semantic interpretation). This research will follow an information hierarchy that proceeds from raw image data to low-level image features, recognition of objects and tissue types, knowledge-based reasoning about disease processes, and, finally, tools and visualizations to support diagnosis decisions by clinical and NLM/NCI collaborators. The research team will employ an underlying paradigm known as Computer-Assisted Visual Interactive Recognition, or CAVIAR, which considers the domain expert an integral part of the equation and attempts to optimize the performance of the complete human-machine system. Intellectual Merit Image content understanding is still considered a vexing open problem at the same time databases are growing rapidly in size and complexity. It is anticipated that this work will have a positive impact in areas relating to medical image analysis, including information extraction, organization, representation, and querying, as well as in training. Broader Impact Through the focus on the NLM/NCI cervigram archive, this research may help advance the role of cervicography as a more cost-effective procedure than pap smears and colposcopy in screening for cervical cancer. Results from this targeted-domain project could also illuminate gaps and help establish new priorities for research in broader domains such as multimedia content structuring, understanding, indexing, and retrieval.
图像数据在医学信息学中具有巨大的实际重要性,并且是工业界和学术界研究人员强烈感兴趣的主题。虽然数字图像数据库是现在流行的临床和教育环境中,和传统的手段进行互动和查询这样的集合可以提供一定程度的有用的功能,有几个例子的系统,试图桥接?语义鸿沟?这项资助中提出的工作是一项多机构合作,结合了医学图像处理,机器学习和模式识别,知识表示和查询以及该领域专家的评估研究,旨在推进这一方向的最新技术。国家医学图书馆和国家癌症研究所收集的60,000张宫颈照片的档案是实现这一目的的理想收藏。NLM宫颈造影档案形成了一个狭窄的图像域,具有有限的和可预测的可变性。在这种情况下,领域知识的显式表示消除了场景(原始图像数据)的低级感官记录与图像(语义解释)中隐含的对象和过程之间的语义差距。这项研究将遵循一个信息层次结构,从原始图像数据到低级别图像特征,对象和组织类型的识别,关于疾病过程的基于知识的推理,以及最后的工具和可视化,以支持临床和NLM/NCI合作者的诊断决策。研究团队将采用一种称为计算机辅助视觉交互识别(CAVIAR)的基础范式,该范式将领域专家视为等式的一个组成部分,并试图优化整个人机系统的性能。在数据库的规模和复杂性迅速增长的同时,图像内容理解仍然被认为是一个令人烦恼的开放问题。预计这项工作将在与医学图像分析有关的领域产生积极影响,包括信息提取、组织、表示和查询以及培训。更广泛的影响通过对NLM/NCI宫颈造影档案的关注,这项研究可能有助于提高宫颈造影术在宫颈癌筛查中的作用,使其成为比巴氏涂片和阴道镜更具成本效益的程序。这个目标领域项目的结果也可以照亮差距,并帮助建立新的优先事项,在更广泛的领域,如多媒体内容结构,理解,索引和检索的研究。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Gang Tan其他文献

Structural Optimization of Heat Sink for Thermoelectric Conversion Unit in Personal Comfort System
个人舒适系统热电转换单元散热器结构优化
  • DOI:
    10.3390/en15082781
  • 发表时间:
    2022-04
  • 期刊:
  • 影响因子:
    3.2
  • 作者:
    Wenping Xue;Xiao Cao;Guangfa Zhang;Gang Tan;Zilong Liu;Kangji Li
  • 通讯作者:
    Kangji Li
A state of the art review on the prediction of building energy consumption using data-driven technique and evolutionary algorithms
使用数据驱动技术和进化算法预测建筑能耗的最新技术综述
Quantifying and Mitigating Cache Side Channel Leakage with Differential Set
使用差分集量化和减轻缓存侧通道泄漏
Certified Parsing of Dependent Regular Grammars
依赖正则语法的认证解析
Size-dependent radiative cooling power of glass-polymer metafilms
玻璃-聚合物超薄膜的尺寸依赖辐射冷却功率
  • DOI:
    10.1016/j.matdes.2025.114095
  • 发表时间:
    2025-06-01
  • 期刊:
  • 影响因子:
    7.900
  • 作者:
    Wenhui Xie;Zhenyu Fan;Gang Tan;Ronggui Yang;Yujie Wei
  • 通讯作者:
    Yujie Wei

Gang Tan的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Gang Tan', 18)}}的其他基金

Collaborative Research: SaTC: CORE: Small: Detecting and Localizing Non-Functional Vulnerabilities in Machine Learning Libraries
协作研究:SaTC:核心:小型:检测和本地化机器学习库中的非功能性漏洞
  • 批准号:
    2230061
  • 财政年份:
    2023
  • 资助金额:
    $ 5.45万
  • 项目类别:
    Standard Grant
SaTC: CORE: Small: Precise and Robust Binary Reverse Engineering and its Applications
SaTC:核心:小型:精确而鲁棒的二进制逆向工程及其应用
  • 批准号:
    2243632
  • 财政年份:
    2023
  • 资助金额:
    $ 5.45万
  • 项目类别:
    Standard Grant
CAPA: Collaborative Research: Lightweight Abstract Memory Features
CAPA:协作研究:轻量级抽象内存功能
  • 批准号:
    1723571
  • 财政年份:
    2017
  • 资助金额:
    $ 5.45万
  • 项目类别:
    Continuing Grant
CAREER: User-Space Protection Domains for Compositional Information Security
职业:组合信息安全的用户空间保护域
  • 批准号:
    1624124
  • 财政年份:
    2016
  • 资助金额:
    $ 5.45万
  • 项目类别:
    Continuing Grant
SHF: Small: Collaborative Research: Reusable Tools for Formal Modeling of Machine Code
SHF:小型:协作研究:用于机器代码形式化建模的可重用工具
  • 批准号:
    1624125
  • 财政年份:
    2016
  • 资助金额:
    $ 5.45万
  • 项目类别:
    Standard Grant
TWC: Medium: Collaborative: Retrofitting Software for Defense-in-Depth
TWC:中:协作:改进纵深防御软件
  • 批准号:
    1624126
  • 财政年份:
    2016
  • 资助金额:
    $ 5.45万
  • 项目类别:
    Standard Grant
TWC: Medium: Collaborative: Retrofitting Software for Defense-in-Depth
TWC:中:协作:改进纵深防御软件
  • 批准号:
    1408826
  • 财政年份:
    2014
  • 资助金额:
    $ 5.45万
  • 项目类别:
    Standard Grant
SHF: Small: Collaborative Research: Reusable Tools for Formal Modeling of Machine Code
SHF:小型:协作研究:用于机器代码形式化建模的可重用工具
  • 批准号:
    1217710
  • 财政年份:
    2012
  • 资助金额:
    $ 5.45万
  • 项目类别:
    Standard Grant
CAREER: User-Space Protection Domains for Compositional Information Security
职业:组合信息安全的用户空间保护域
  • 批准号:
    1149211
  • 财政年份:
    2012
  • 资助金额:
    $ 5.45万
  • 项目类别:
    Continuing Grant
TC: Small: Collaborative Research: Securing Multilingual Software Systems
TC:小型:协作研究:保护多语言软件系统
  • 批准号:
    0915157
  • 财政年份:
    2009
  • 资助金额:
    $ 5.45万
  • 项目类别:
    Standard Grant

相似国自然基金

吩嗪类化合物CXT-A3对乳腺癌干细胞的抑制作用及机制研究
  • 批准号:
  • 批准年份:
    2021
  • 资助金额:
    55 万元
  • 项目类别:
    面上项目

相似海外基金

III-CXT-Small: Information Discovery on Domain Data Graphs
III-CXT-Small:领域数据图上的信息发现
  • 批准号:
    1216032
  • 财政年份:
    2011
  • 资助金额:
    $ 5.45万
  • 项目类别:
    Standard Grant
III-CXT-Small: Collaborative Research: Automatic Geomorphic Mapping and Analysis of Land Surfaces Using Pattern Recognition
III-CXT-Small:协作研究:利用模式识别自动地貌测绘和地表分析
  • 批准号:
    1103684
  • 财政年份:
    2010
  • 资助金额:
    $ 5.45万
  • 项目类别:
    Standard Grant
III-CXT-Small: Information Discovery on Domain Data Graphs
III-CXT-Small:领域数据图上的信息发现
  • 批准号:
    0811922
  • 财政年份:
    2008
  • 资助金额:
    $ 5.45万
  • 项目类别:
    Standard Grant
III-CXT-Small: Collaborative Research: REGNET - Information Management and Compliance Assistance for Patent Laws and Regulations
III-CXT-Small:合作研究:REGNET - 专利法律法规的信息管理和合规协助
  • 批准号:
    0811460
  • 财政年份:
    2008
  • 资助金额:
    $ 5.45万
  • 项目类别:
    Standard Grant
III-CXT-Small: Collaborative Research: Automatic Geomorphic Mapping and Analysis of Land Surfaces Using Pattern Recognition
III-CXT-Small:协作研究:利用模式识别自动地貌测绘和地表分析
  • 批准号:
    0812271
  • 财政年份:
    2008
  • 资助金额:
    $ 5.45万
  • 项目类别:
    Standard Grant
III-CXT-Small: Collaborative Research: Automatic Geomorphic Mapping and Analysis of Land Surfaces Using Pattern Recognition
III-CXT-Small:协作研究:利用模式识别自动地貌测绘和地表分析
  • 批准号:
    0812372
  • 财政年份:
    2008
  • 资助金额:
    $ 5.45万
  • 项目类别:
    Standard Grant
III-CXT-Small: Collaborative Research: Structuring, Reasoning, and Querying in a Very Large Medical Image Database
III-CXT-Small:协作研究:在超大型医学图像数据库中构建、推理和查询
  • 批准号:
    0812073
  • 财政年份:
    2008
  • 资助金额:
    $ 5.45万
  • 项目类别:
    Continuing Grant
III-CXT-Small: Algorithmic strategies for genotype-phenotype correlations
III-CXT-Small:基因型-表型相关性的算法策略
  • 批准号:
    0810905
  • 财政年份:
    2008
  • 资助金额:
    $ 5.45万
  • 项目类别:
    Standard Grant
III-CXT-Small: Graphs to Diversity: extracting genomic variation from sequence graphs
III-CXT-Small:多样性图表:从序列图中提取基因组变异
  • 批准号:
    0812111
  • 财政年份:
    2008
  • 资助金额:
    $ 5.45万
  • 项目类别:
    Continuing Grant
III-CXT-Small: Collaborative Research: Structuring, Reasoning, and Querying
III-CXT-Small:协作研究:结构化、推理和查询
  • 批准号:
    0812124
  • 财政年份:
    2008
  • 资助金额:
    $ 5.45万
  • 项目类别:
    Continuing Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了