Contact topology and automorphisms of surfaces
接触拓扑和表面自同构
基本信息
- 批准号:0711341
- 负责人:
- 金额:$ 24.4万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2007
- 资助国家:美国
- 起止时间:2007-07-01 至 2012-06-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Fundamental work of Giroux established a one-to-one correspondence between contact structures on closed three-manifolds and automorphisms of surfaces up to stabilization via compatible open book decompositions. It is this correspondence between two classically studied, fundamentally important, objects that the PIs propose to study. Since positive stabilization of surface automorphisms generates an almost intractable equivalence relation, it is important to discern the properties of a contact structure from just a single representative automorphism. An example of such a result is the fact that automorphisms which are compositions of positive Dehn twists induce contact structures that are Stein fillable, i.e. that arise as natural boundaries of Stein manifolds. We are working to understand questions like: what property of an automorphism guarantees symplectic fillability, what property implies existence of Giroux torsion. Investigating these questions will have applications to the study of contact invariants in Heegaard-Floer homology theory in both the bounded and unbounded cases.Contact topology or geometry and its even dimensional counterparts, symplectic topology or geometry, were born out of the study of questions arising in classical mechanics and thermodynamics. Three-dimensional manifolds are mathematical objects modeled on the space in which we live. Contact structures on such spaces arise naturally in the study of fluid flows as the family of planes perpendicular to the flow. A familiar example of a contact structure occurs in the design of DLP front projection televisions where they dictate the use of literally millions of tiny mirrors rather than one large curved mirror. Considerable progress has been made in the last several decades on the three-dimensional contact topology and four-dimensional symplectic topology. Recent progress has allowed researchers to apply two-dimensional techniques to the inherently three-dimensional study of contact topology.
Giroux的基础工作建立了封闭三流形上的接触结构与曲面自同构之间的一一对应,通过相容的开卷分解达到稳定。这是两个经典的研究之间的对应关系,从根本上说,重要的,对象,PI建议研究。 由于正稳定的表面自同构产生一个几乎难以处理的等价关系,重要的是要辨别接触结构的性质,从一个单一的代表自同构。 这样一个结果的一个例子是这样一个事实,即自同构是组成的积极德恩扭曲诱导接触结构是斯坦填充,即出现自然边界的斯坦流形。我们正在努力理解这样的问题:什么性质的自同构保证辛可填充性,什么性质意味着吉鲁挠的存在。这些问题的研究将应用于有界和无界情形下Heegaard-Floer同调理论中接触不变量的研究。接触拓扑或几何及其偶维对应物辛拓扑或几何,都诞生于对经典力学和热力学中出现的问题的研究。三维流形是以我们生活的空间为模型的数学对象。 在研究流体流动时,这种空间上的接触结构作为垂直于流动的平面族自然出现。接触结构的一个熟悉的例子出现在DLP前投影电视的设计中,在那里他们规定使用数百万个微小的镜子,而不是一个大的曲面镜。 在过去的几十年里,三维接触拓扑和四维辛拓扑都取得了很大的进展。 最近的进展使研究人员能够将二维技术应用于接触拓扑的固有三维研究。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Gordana Matic其他文献
Prognosis of women compared with men with heart failure and acute myocardial infarction after previous revascularization
- DOI:
10.1016/s0735-1097(02)80860-9 - 发表时间:
2002-03-06 - 期刊:
- 影响因子:
- 作者:
Predrag M. Mitrovic;Zorana Vaslljevic-Pokrajcic;Branislav Stefanovic;Jovan Perunicic;Gordana Matic;Nebojsa Radovanovic;Dubravka Rajic - 通讯作者:
Dubravka Rajic
Gordana Matic的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Gordana Matic', 18)}}的其他基金
Conference: Georgia Topology Conference
会议:乔治亚州拓扑会议
- 批准号:
2301632 - 财政年份:2023
- 资助金额:
$ 24.4万 - 项目类别:
Standard Grant
Perspectives in topology and geometry of 4-manifolds
4 流形的拓扑和几何视角
- 批准号:
1612071 - 财政年份:2016
- 资助金额:
$ 24.4万 - 项目类别:
Standard Grant
Collaborative Research: Taut foliations and contact topology
合作研究:拉紧的叶状结构和接触拓扑
- 批准号:
1612036 - 财政年份:2016
- 资助金额:
$ 24.4万 - 项目类别:
Continuing Grant
Georgia Topology Conference, May 21-25, 2014
乔治亚州拓扑会议,2014 年 5 月 21-25 日
- 批准号:
1435788 - 财政年份:2014
- 资助金额:
$ 24.4万 - 项目类别:
Standard Grant
SM: 2009 Georgia International Topology Conference
SM:2009年乔治亚国际拓扑会议
- 批准号:
0852505 - 财政年份:2009
- 资助金额:
$ 24.4万 - 项目类别:
Standard Grant
Georgia International Topology Conference, May 21 - June 2, 2001
乔治亚国际拓扑会议,2001 年 5 月 21 日至 6 月 2 日
- 批准号:
0110085 - 财政年份:2001
- 资助金额:
$ 24.4万 - 项目类别:
Standard Grant
Tight Contact Structures and 3-dimensional Topology
紧接触结构和 3 维拓扑
- 批准号:
0072853 - 财政年份:2000
- 资助金额:
$ 24.4万 - 项目类别:
Continuing Grant
相似国自然基金
Fibered纽结的自同胚、Floer同调与4维亏格
- 批准号:12301086
- 批准年份:2023
- 资助金额:30.00 万元
- 项目类别:青年科学基金项目
Domain理论与拓扑学研究
- 批准号:60473009
- 批准年份:2004
- 资助金额:7.0 万元
- 项目类别:面上项目
相似海外基金
Conference: 57th Spring Topology and Dynamical Systems Conference
会议:第57届春季拓扑与动力系统会议
- 批准号:
2348830 - 财政年份:2024
- 资助金额:
$ 24.4万 - 项目类别:
Standard Grant
Conference: Underrepresented Students in Algebra and Topology Research Symposium (USTARS)
会议:代数和拓扑研究研讨会(USTARS)中代表性不足的学生
- 批准号:
2400006 - 财政年份:2024
- 资助金额:
$ 24.4万 - 项目类别:
Standard Grant
CAREER: Geometry and topology of quantum materials
职业:量子材料的几何和拓扑
- 批准号:
2340394 - 财政年份:2024
- 资助金额:
$ 24.4万 - 项目类别:
Continuing Grant
Conference: Midwest Topology Seminar
会议:中西部拓扑研讨会
- 批准号:
2341204 - 财政年份:2024
- 资助金额:
$ 24.4万 - 项目类别:
Standard Grant
Topology in many-body quantum systems in and out of equilibrium
处于平衡状态和非平衡状态的多体量子系统中的拓扑
- 批准号:
2300172 - 财政年份:2024
- 资助金额:
$ 24.4万 - 项目类别:
Continuing Grant
Algebraic Structures in String Topology
弦拓扑中的代数结构
- 批准号:
2405405 - 财政年份:2024
- 资助金额:
$ 24.4万 - 项目类别:
Standard Grant
Conference: Combinatorial and Analytical methods in low-dimensional topology
会议:低维拓扑中的组合和分析方法
- 批准号:
2349401 - 财政年份:2024
- 资助金额:
$ 24.4万 - 项目类别:
Standard Grant
On combinatorics, the algebra, topology, and geometry of a new class of graphs that generalize ordinary and ribbon graphs
关于组合学、一类新图的代数、拓扑和几何,概括了普通图和带状图
- 批准号:
24K06659 - 财政年份:2024
- 资助金额:
$ 24.4万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
CAREER: Gauge-theoretic Floer invariants, C* algebras, and applications of analysis to topology
职业:规范理论 Floer 不变量、C* 代数以及拓扑分析应用
- 批准号:
2340465 - 财政年份:2024
- 资助金额:
$ 24.4万 - 项目类别:
Continuing Grant
CAREER: Elucidating the Impact of Side-Chain Topology on the Structure-Property Relationship in Bottlebrush Polymers
职业:阐明侧链拓扑对洗瓶刷聚合物结构-性能关系的影响
- 批准号:
2340664 - 财政年份:2024
- 资助金额:
$ 24.4万 - 项目类别:
Continuing Grant














{{item.name}}会员




