RUI: Adaptive Kernels for Partial Differential Equation Models in Image Denoising: Construction and Algorithms

RUI:图像去噪中偏微分方程模型的自适应核:构造和算法

基本信息

  • 批准号:
    0712925
  • 负责人:
  • 金额:
    $ 16.86万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2007
  • 资助国家:
    美国
  • 起止时间:
    2007-08-01 至 2011-07-31
  • 项目状态:
    已结题

项目摘要

The investigator constructs adaptive kernels for diffusion PDE models in image denoising and develops kernel-based denoising algorithms. An adaptive kernel is a kernel that adaptively changes its kernel characteristics depending on the image content within a local window. Discrete kernels are filters, which are widely used in industrial image processing; and non-iterative filters can realize the real-time denoising. The proposed adaptive kernels are mainly derived from PDE models. Due to Rudin-Osher-Fatemi's influential work, there are a considerable number of PDE models for image denoising. Based on the extensive results in numerical analysis, highly accurate and stable algorithms have been developed. However, most numerical PDE algorithms involve either iteration or inverse matrices. They are time and/or memory consuming and therefore not suitable for real-time pre-processing noise reduction. The investigator studies the construction of adaptive kernels for some popular PDE models, designs parametric adaptive filters from these kernels, and develops algorithms for their implementations with emphasis on the extremely fast single-pass filter process. The investigator creates the GUI software to perform noise reduction based on the kernel-based algorithms, which provide a development kit suitable for industrial demands. The infinitesimal method is the main tool for the development of the adaptive kernels. He also applies Bayesian Decision Theory to create the rule for the optimal selection of the parameters in the adaptive filters, which are used to control the quality of noise reduction. This research support the national interest in NANOTECHNOLOGY and INFORMATION TECHNOLOGY due to the demand for digital images/videos for low-cost security cameras, mobile digital TV, cell-video phones, all of which are used for HOMELAND SECURITY and DEPARTMENT OF DEFENSE applications. The research also impacts feature-preserve noise reduction techniques, which is on the rise. On-line videos such as web-cams generally produce low-quality pictures. Even high-quality digital cameras and camcorders used in low-light or artificial-light environments produce noise. Feature-preserve noise reduction techniques provide a low-cost solution for enhancing these low-quality images. There are many types of software on the market for picture cleaning and computer enhancement, however mobile videos and similar products require real-time processing that can be built into the devices. The security demand for these techniques is very high, especially in U.S. Border areas, while the number of solutions are low. This project bridges the gulf between the highly developed theory and the underdeveloped industrial applications.
研究人员为图像去噪中的扩散偏微分方程模型构建了自适应核,并开发了基于核的去噪算法。自适应内核是根据本地窗口内的图像内容自适应地改变其内核特性的内核。离散核即滤波器,广泛应用于工业图像处理;非迭代滤波器可以实现实时去噪。所提出的自适应核主要源自偏微分方程模型。由于 Rudin-Osher-Fatemi 的影响力工作,图像去噪的 PDE 模型数量相当多。基于数值分析的广泛结果,已经开发出高精度和稳定的算法。然而,大多数数值偏微分方程算法涉及迭代或逆矩阵。它们消耗时间和/或内存,因此不适合实时预处理降噪。研究人员研究了一些流行的 PDE 模型的自适应内核的构造,从这些内核设计参数自适应滤波器,并为其实现开发算法,重点是极快的单通滤波过程。研究人员创建了基于内核的算法进行降噪的 GUI 软件,提供了适合工业需求的开发套件。无穷小方法是开发自适应核的主要工具。他还应用贝叶斯决策理论来创建自适应滤波器中参数的最佳选择规则,用于控制降噪质量。这项研究支持了国家对纳米技术和信息技术的兴趣,因为低成本安全摄像机、移动数字电视、手机视频电话对数字图像/视频的需求,所有这些都用于国土安全和国防部应用。这项研究还影响了正在兴起的保留特征的降噪技术。网络摄像头等在线视频通常会生成低质量的图片。即使在弱光或人造光环境中使用的高质量数码相机和摄像机也会产生噪音。特征保留降噪技术为增强这些低质量图像提供了一种低成本解决方案。市场上有许多类型的用于图片清理和计算机增强的软件,但是移动视频和类似产品需要可以内置到设备中的实时处理。对这些技术的安全需求非常高,尤其是在美国边境地区,而解决方案的数量却很少。该项目弥合了高度发达的理论与不发达的工业应用之间的鸿沟。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Jianzhong Wang其他文献

Sol-gel-derived hybrid conductive films for electromagnetic interference (EMI) shielding
用于电磁干扰 (EMI) 屏蔽的溶胶-凝胶衍生混合导电薄膜
Modeling sintering behavior of metal fibers with different fiber angles
模拟不同纤维角度金属纤维的烧结行为
  • DOI:
    10.1007/s12598-016-0749-9
  • 发表时间:
    2018-10
  • 期刊:
  • 影响因子:
    8.8
  • 作者:
    Dongdong Chen;Zhoushun Zheng;Jianzhong Wang;Huiping Tang
  • 通讯作者:
    Huiping Tang
The effects of high temperature and fiber diameter on the quasi static compressive behavior of metal fiber sintered sheets
高温和纤维直径对金属纤维烧结板准静态压缩行为的影响
  • DOI:
    10.1016/j.msea.2017.02.093
  • 发表时间:
    2017-04
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Weidong Song;Ge Liu;Jianzhong Wang;Huiping Tang
  • 通讯作者:
    Huiping Tang
A constrained sparse representation approach for video anomaly detection
一种用于视频异常检测的约束稀疏表示方法
Evaluating the technical efficiency of Chinese airport airside activities
评估中国机场空侧活动的技术效率
  • DOI:
    10.1016/j.jairtraman.2011.10.007
  • 发表时间:
    2012-05
  • 期刊:
  • 影响因子:
    6
  • 作者:
    Baocheng Zhang;Jianzhong Wang;Changyou Liu;Yifei Zhao
  • 通讯作者:
    Yifei Zhao

Jianzhong Wang的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Jianzhong Wang', 18)}}的其他基金

Mathematical Sciences: Wavelets Based on Several Scaling Functions and Related Applications
数学科学:基于多个标度函数的小波及相关应用
  • 批准号:
    9503282
  • 财政年份:
    1995
  • 资助金额:
    $ 16.86万
  • 项目类别:
    Standard Grant

相似海外基金

Collaborative Research: Using Adaptive Lessons to Enhance Motivation, Cognitive Engagement, And Achievement Through Equitable Classroom Preparation
协作研究:通过公平的课堂准备,利用适应性课程来增强动机、认知参与和成就
  • 批准号:
    2335802
  • 财政年份:
    2024
  • 资助金额:
    $ 16.86万
  • 项目类别:
    Standard Grant
Collaborative Research: Using Adaptive Lessons to Enhance Motivation, Cognitive Engagement, And Achievement Through Equitable Classroom Preparation
协作研究:通过公平的课堂准备,利用适应性课程来增强动机、认知参与和成就
  • 批准号:
    2335801
  • 财政年份:
    2024
  • 资助金额:
    $ 16.86万
  • 项目类别:
    Standard Grant
CAREER: Adaptive Deep Learning Systems Towards Edge Intelligence
职业:迈向边缘智能的自适应深度学习系统
  • 批准号:
    2338512
  • 财政年份:
    2024
  • 资助金额:
    $ 16.86万
  • 项目类别:
    Continuing Grant
CAREER: Data-Enabled Neural Multi-Step Predictive Control (DeMuSPc): a Learning-Based Predictive and Adaptive Control Approach for Complex Nonlinear Systems
职业:数据支持的神经多步预测控制(DeMuSPc):一种用于复杂非线性系统的基于学习的预测和自适应控制方法
  • 批准号:
    2338749
  • 财政年份:
    2024
  • 资助金额:
    $ 16.86万
  • 项目类别:
    Standard Grant
RII Track-4:NSF: HEAL: Heterogeneity-aware Efficient and Adaptive Learning at Clusters and Edges
RII Track-4:NSF:HEAL:集群和边缘的异质性感知高效自适应学习
  • 批准号:
    2327452
  • 财政年份:
    2024
  • 资助金额:
    $ 16.86万
  • 项目类别:
    Standard Grant
Collaborative Research: Uncovering the adaptive origins of fossil apes through the application of a transdisciplinary approach
合作研究:通过应用跨学科方法揭示类人猿化石的适应性起源
  • 批准号:
    2316612
  • 财政年份:
    2024
  • 资助金额:
    $ 16.86万
  • 项目类别:
    Standard Grant
Collaborative Research: Uncovering the adaptive origins of fossil apes through the application of a transdisciplinary approach
合作研究:通过应用跨学科方法揭示类人猿化石的适应性起源
  • 批准号:
    2316615
  • 财政年份:
    2024
  • 资助金额:
    $ 16.86万
  • 项目类别:
    Standard Grant
A novel damage characterization technique based on adaptive deconvolution extraction algorithm of multivariate AE signals for accurate diagnosis of osteoarthritic knees
基于多变量 AE 信号自适应反卷积提取算法的新型损伤表征技术,用于准确诊断膝关节骨关节炎
  • 批准号:
    24K07389
  • 财政年份:
    2024
  • 资助金额:
    $ 16.86万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Spatiotemporal dynamics of acetylcholine activity in adaptive behaviors and response patterns
适应性行为和反应模式中乙酰胆碱活性的时空动态
  • 批准号:
    24K10485
  • 财政年份:
    2024
  • 资助金额:
    $ 16.86万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Chromaticity-adaptive direct white light generation from luminescent carbogenic nanomaterials coupled with nanophotonic cavity
发光碳原纳米材料与纳米光子腔耦合产生色度自适应直接白光
  • 批准号:
    24K17589
  • 财政年份:
    2024
  • 资助金额:
    $ 16.86万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了