CAREER: Adaptive Deep Learning Systems Towards Edge Intelligence
职业:迈向边缘智能的自适应深度学习系统
基本信息
- 批准号:2338512
- 负责人:
- 金额:$ 66.96万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2024
- 资助国家:美国
- 起止时间:2024-03-01 至 2029-02-28
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
Edge intelligence pushes intelligent data processing using deep neural networks (DNNs) to the edge of the network, closer to data sources. It enables applications across various fields and has garnered significant attention from both industry and academia. However, the limited resources on edge platforms, such as edge servers and Internet of Things devices, hinder the ability to deliver fast and accurate responses to queries from deep learning prediction tasks. As a result, only some deep learning tasks and smaller DNN models suitable for edge deployment are feasible. To overcome this limitation, this project explores a new adaptive approach in building deep learning systems. The systems will make real-time adjustments to the DNNs executed for prediction tasks based on the varying resource demands arising from three critical dimensions -- variable task complexity, fluctuating inference workloads, and resource contention in multi-tenant edge environments. The goal is to optimize both system efficiency and accuracy. Realizing the envisioned adaptiveness will facilitate the effective deployment of deep learning techniques across diverse applications and environments. This research has the potential to open new possibilities for the development of novel edge applications that were previously limited by resource constraints. It will enable a broader range of deep learning tasks to be executed on edge platforms, along with more powerful DNN models, a capability critical in fully unleashing the potential of edge intelligence. The practical impact of the project will be demonstrated in a variety of applications, and in particular, applications that enhance elder care through collaboration with the Massachusetts AI and Technology Center for Connected Care in Aging and Alzheimer’s Disease. Moreover, this project aims to cultivate a pipeline of skilled engineers and computer scientists with interdisciplinary expertise in computer systems and machine learning. Efforts will be made to recruit underrepresented students through diversity programs and outreach initiatives to K-12 students.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
边缘智能将使用深度神经网络(DNN)的智能数据处理推向网络边缘,更接近数据源。它支持跨各个领域的应用,并引起了工业界和学术界的极大关注。然而,边缘平台(如边缘服务器和物联网设备)上的有限资源阻碍了对深度学习预测任务的查询提供快速准确响应的能力。因此,只有一些适合边缘部署的深度学习任务和较小的DNN模型是可行的。为了克服这一限制,该项目探索了一种新的自适应方法来构建深度学习系统。这些系统将根据三个关键维度(可变任务复杂性、波动的推理工作负载和多租户边缘环境中的资源争用)产生的不同资源需求,对为预测任务执行的DNN进行实时调整。目标是优化系统效率和准确性。实现所设想的适应性将促进深度学习技术在不同应用程序和环境中的有效部署。这项研究有可能为开发以前受资源限制的新型边缘应用开辟新的可能性。它将使更广泛的深度学习任务能够在边缘平台上执行,沿着更强大的DNN模型,这是充分释放边缘智能潜力的关键能力。该项目的实际影响将在各种应用中得到证明,特别是通过与马萨诸塞州老龄化和阿尔茨海默病互联护理人工智能和技术中心合作来加强老年人护理的应用。此外,该项目旨在培养一批在计算机系统和机器学习方面具有跨学科专业知识的熟练工程师和计算机科学家。该奖项反映了NSF的法定使命,并通过使用基金会的智力价值和更广泛的影响审查标准进行评估,被认为值得支持。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Hui Guan其他文献
An Interface Co-modification Strategy for Improving the Efficiency and Stability of CsPbI3 Perovskite Solar Cells
提高 CsPbI3 钙钛矿太阳能电池效率和稳定性的界面共修饰策略
- DOI:
10.1021/acsaem.2c02096 - 发表时间:
2022-10 - 期刊:
- 影响因子:6.4
- 作者:
Hui Guan;Yutian Lei;Qiyuan Wu;Xufeng Zhou;Haoxu Wang;Gang Wang;Wenquan Li;Zhiwen Jin;Wei Lan - 通讯作者:
Wei Lan
Study on the freezing characteristic of silty clay under high loading conditionsnbsp;
高荷载条件下粉质黏土冻结特性研究
- DOI:
- 发表时间:
2015 - 期刊:
- 影响因子:4.1
- 作者:
Hui Guan;Dayan Wang;Wei Ma;Yanhu Mu;Zhi Wen;Tongxin Gu;Yongtao Wang - 通讯作者:
Yongtao Wang
Predictive model for growth of Leuconostoc mesenteroides in Chinese cabbage juices with different salinities
不同盐度白菜汁中肠膜明串珠菌生长预测模型
- DOI:
10.1016/j.lwt.2022.114264 - 发表时间:
2022 - 期刊:
- 影响因子:0
- 作者:
Shaohua Xing;Xiru Zhang;Hui Guan;Huamin Li;Wenli Liu - 通讯作者:
Wenli Liu
Modified separator engineering with 2D ultrathin Nisub3/subB@rGO: Extraordinary electrochemical performance of the lithium-sulfur battery with enormous-sulfur-content cathode in low electrolyte/sulfur ratio
- DOI:
10.1016/j.jallcom.2022.164917 - 发表时间:
2022-07-25 - 期刊:
- 影响因子:6.300
- 作者:
Aml E. Shrshr;Yutao Dong;Mohammed A. Al-Tahan;Xiyang Kang;Hui Guan;Xianfu Zheng;Jianmin Zhang - 通讯作者:
Jianmin Zhang
Wap equity Scale Development and Validation
Wap 权益量表的开发和验证
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
Hui Guan;Xia Xie;Yunfu Huo;Yujun Feng - 通讯作者:
Yujun Feng
Hui Guan的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Hui Guan', 18)}}的其他基金
Collaborative Research: CSR: Medium: MemDrive: Memory-Driven Full-Stack Collaboration for Autonomous Embedded Systems
协作研究:CSR:媒介:MemDrive:自主嵌入式系统的内存驱动全栈协作
- 批准号:
2312396 - 财政年份:2023
- 资助金额:
$ 66.96万 - 项目类别:
Continuing Grant
相似海外基金
Dissecting the role of the adaptive immunity in the Parkinson's phenotypes using deep data
使用深度数据剖析适应性免疫在帕金森病表型中的作用
- 批准号:
MR/X032892/1 - 财政年份:2024
- 资助金额:
$ 66.96万 - 项目类别:
Fellowship
Safe Lyapunov-Based Deep Neural Network Adaptive Control of a Rehabilitative Upper Extremity Hybrid Exoskeleton
基于安全李亚普诺夫的深度神经网络自适应控制康复上肢混合外骨骼
- 批准号:
2230971 - 财政年份:2023
- 资助金额:
$ 66.96万 - 项目类别:
Standard Grant
Condensation and Prediction Acceleration for Deep Learning Through Low-rank Regularization and Adaptive Proximal Methods
通过低秩正则化和自适应近端方法进行深度学习的压缩和预测加速
- 批准号:
23K19981 - 财政年份:2023
- 资助金额:
$ 66.96万 - 项目类别:
Grant-in-Aid for Research Activity Start-up
An Integrated Biomarker Approach to Personalized, Adaptive Deep Brain Stimulation in Parkinson Disease
帕金森病个性化、适应性深部脑刺激的综合生物标志物方法
- 批准号:
10571952 - 财政年份:2023
- 资助金额:
$ 66.96万 - 项目类别:
Development of novel approaches to improve water resources data records, deep learning based forecasting, and participatory socio-hydrological systems modeling for integrated and adaptive water resources management
开发新方法来改进水资源数据记录、基于深度学习的预测以及用于综合和适应性水资源管理的参与式社会水文系统建模
- 批准号:
RGPIN-2020-05325 - 财政年份:2022
- 资助金额:
$ 66.96万 - 项目类别:
Discovery Grants Program - Individual
An adaptive individualization of Hierarchical sleep modelling using Bayesian deep learning
使用贝叶斯深度学习的分层睡眠模型的自适应个体化
- 批准号:
22K12276 - 财政年份:2022
- 资助金额:
$ 66.96万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
ERI: An Adaptive Incremental Deep Learning Architecture for Real-Time Inference of RF Signals in Dynamic Spectrum Sharing Environments
ERI:一种自适应增量深度学习架构,用于动态频谱共享环境中射频信号的实时推理
- 批准号:
2138898 - 财政年份:2022
- 资助金额:
$ 66.96万 - 项目类别:
Standard Grant
Communication Environment Estimation by Deep Learning for Improving Frequency Utilization Efficiency and its Application to Adaptive Modulation Coding
提高频率利用效率的深度学习通信环境估计及其在自适应调制编码中的应用
- 批准号:
22K14253 - 财政年份:2022
- 资助金额:
$ 66.96万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Deep and fast imaging using adaptive excitation sources
使用自适应激励源进行深度快速成像
- 批准号:
10516870 - 财政年份:2022
- 资助金额:
$ 66.96万 - 项目类别:
Elucidation of the adaptive mechanism of intricate human motion imitated by deep reinforcement learning
深度强化学习阐明复杂人体运动的自适应机制
- 批准号:
22K20519 - 财政年份:2022
- 资助金额:
$ 66.96万 - 项目类别:
Grant-in-Aid for Research Activity Start-up