RI: Collaborative Research: Bio-inspired Navigation

RI:合作研究:仿生导航

基本信息

  • 批准号:
    0713260
  • 负责人:
  • 金额:
    $ 22.5万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2007
  • 资助国家:
    美国
  • 起止时间:
    2007-09-01 至 2010-08-31
  • 项目状态:
    已结题

项目摘要

There has been successful research on establishing metric representations of the environment required together with motion planning for any navigation task. Such metric maps require though excessive amounts of storage to memorize the robots' trajectories and all landmark positions. On the other hand, animals have excellent navigation capabilities based on visual sensing and simple path integration.The technical approach can be summarized in the modeling of places and the map creation. An abstraction hierarchy is introduced for the visual modeling of places with the layers of feature landmarks, salient regions, and objects. A novel image similarity score will be used for tracking as well as loop closing and is robust to perceptual aliasing. Objects are learned from training sets of appearances of salient landmarks and in the highest abstraction level places are labeled depending on their object content and the constellation of objects in space. Topological maps are made of nodes labeled with place labels and associated with an action to neighboring nodes obtained from the relative pose between the two places. Learning of the maps will happen in the space of all possible topologies of place sets. A collaboration with biologists will try to cross-validate hypotheses based on visual inputs obtained from the animal's viewpoint.
已经成功地研究了建立环境的度量表示法以及任何导航任务所需的运动规划。这种公制地图需要过多的存储空间来记忆机器人的轨迹和所有地标位置。另一方面,动物基于视觉感知和简单的路径整合具有良好的导航能力,其技术方法可以概括为地点建模和地图创建。引入了抽象层次结构,用于对具有特征地标、显著区域和对象层的位置进行可视化建模。一种新的图像相似性分数将被用于跟踪和闭合环路,并且对感知混叠具有鲁棒性。从显著地标的外观训练集学习对象,并根据其对象内容和空间中对象的星座来标记在最高抽象级别中的位置。拓扑图是由标有位置标签的节点组成的,并与从两个位置之间的相对姿势获得的相邻节点的动作相关联。地图的学习将在位置集的所有可能拓扑的空间中进行。与生物学家的合作将试图基于从动物角度获得的视觉输入来交叉验证假说。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Kostas Daniilidis其他文献

Perception-Driven Curiosity with Bayesian Surprise
感知驱动的好奇心与贝叶斯惊喜
  • DOI:
  • 发表时间:
    2019
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Bernadette Bucher;Anton Arapin;Ramanan Sekar;M. Badger;Feifei Duan;Oleh Rybkin;Kostas Daniilidis
  • 通讯作者:
    Kostas Daniilidis
Technical report on Optimization-Based Bearing-Only Visual Homing with Applications to a 2-D Unicycle Model
关于基于优化的仅轴承视觉归位及其在二维独轮车模型中的应用的技术报告
  • DOI:
  • 发表时间:
    2014
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Roberto Tron;Kostas Daniilidis
  • 通讯作者:
    Kostas Daniilidis
Template gradient matching in spherical images
球形图像中的模板梯度匹配
Predicting the Future with Transformational States
用转型国家预测未来
  • DOI:
  • 发表时间:
    2018
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Andrew Jaegle;Oleh Rybkin;K. Derpanis;Kostas Daniilidis
  • 通讯作者:
    Kostas Daniilidis
Live Demonstration: Unsupervised Event-Based Learning of Optical Flow, Depth and Egomotion
现场演示:基于事件的无监督光流、深度和自我运动学习

Kostas Daniilidis的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Kostas Daniilidis', 18)}}的其他基金

Collaborative Research: Visual Tactile Neural Fields for Active Digital Twin Generation
合作研究:用于主动数字孪生生成的视觉触觉神经场
  • 批准号:
    2220868
  • 财政年份:
    2022
  • 资助金额:
    $ 22.5万
  • 项目类别:
    Standard Grant
RI: Medium: Learning to Map and Navigate with Vision and Language
RI:媒介:学习用视觉和语言绘制地图和导航
  • 批准号:
    2212433
  • 财政年份:
    2022
  • 资助金额:
    $ 22.5万
  • 项目类别:
    Continuing Grant
RI: Medium: Collaborative Research: Closed Loop Perceptual Planning for Dynamic Locomotion
RI:中:协作研究:动态运动的闭环感知规划
  • 批准号:
    1703319
  • 财政年份:
    2017
  • 资助金额:
    $ 22.5万
  • 项目类别:
    Continuing Grant
MRI: Development of an Observatory for Quantitative Analysis of Collective Behavior in Animals
MRI:开发动物集体行为定量分析观测站
  • 批准号:
    1626008
  • 财政年份:
    2016
  • 资助金额:
    $ 22.5万
  • 项目类别:
    Standard Grant
I/UCRC Phase I: Robots and Sensors for the Human Well-being
I/UCRC 第一阶段:造福人类福祉的机器人和传感器
  • 批准号:
    1439681
  • 财政年份:
    2014
  • 资助金额:
    $ 22.5万
  • 项目类别:
    Continuing Grant
NRI: Small: Collaborative Research: Active Sensing for Robotic Cameramen
NRI:小型:协作研究:机器人摄影师的主动传感
  • 批准号:
    1317947
  • 财政年份:
    2013
  • 资助金额:
    $ 22.5万
  • 项目类别:
    Standard Grant
I-Corps: BlindNav: Indoor Navigation for the Visually Impaired
I-Corps:BlindNav:为视障人士提供室内导航
  • 批准号:
    1265129
  • 财政年份:
    2012
  • 资助金额:
    $ 22.5万
  • 项目类别:
    Standard Grant
IGERT: Complex Scene Perception
IGERT:复杂场景感知
  • 批准号:
    0966142
  • 财政年份:
    2010
  • 资助金额:
    $ 22.5万
  • 项目类别:
    Continuing Grant
CDI-Type II: Collaborative Research: Perception of Scene Layout by Machines and Visually Impaired Users
CDI-Type II:协作研究:机器和视障用户对场景布局的感知
  • 批准号:
    1028009
  • 财政年份:
    2010
  • 资助金额:
    $ 22.5万
  • 项目类别:
    Standard Grant
CDI-Type II: Collaborative Research: Cyber Enhancement of Spatial Cognition for the Visually Impaired
CDI-Type II:协作研究:视觉障碍者空间认知的网络增强
  • 批准号:
    0835714
  • 财政年份:
    2008
  • 资助金额:
    $ 22.5万
  • 项目类别:
    Standard Grant

相似海外基金

Collaborative Research: RI: Medium: Principles for Optimization, Generalization, and Transferability via Deep Neural Collapse
合作研究:RI:中:通过深度神经崩溃实现优化、泛化和可迁移性的原理
  • 批准号:
    2312841
  • 财政年份:
    2023
  • 资助金额:
    $ 22.5万
  • 项目类别:
    Standard Grant
Collaborative Research: RI: Medium: Principles for Optimization, Generalization, and Transferability via Deep Neural Collapse
合作研究:RI:中:通过深度神经崩溃实现优化、泛化和可迁移性的原理
  • 批准号:
    2312842
  • 财政年份:
    2023
  • 资助金额:
    $ 22.5万
  • 项目类别:
    Standard Grant
Collaborative Research: RI: Small: Foundations of Few-Round Active Learning
协作研究:RI:小型:少轮主动学习的基础
  • 批准号:
    2313131
  • 财政年份:
    2023
  • 资助金额:
    $ 22.5万
  • 项目类别:
    Standard Grant
Collaborative Research: RI: Medium: Lie group representation learning for vision
协作研究:RI:中:视觉的李群表示学习
  • 批准号:
    2313151
  • 财政年份:
    2023
  • 资助金额:
    $ 22.5万
  • 项目类别:
    Continuing Grant
Collaborative Research: RI: Medium: Principles for Optimization, Generalization, and Transferability via Deep Neural Collapse
合作研究:RI:中:通过深度神经崩溃实现优化、泛化和可迁移性的原理
  • 批准号:
    2312840
  • 财政年份:
    2023
  • 资助金额:
    $ 22.5万
  • 项目类别:
    Standard Grant
Collaborative Research: RI: Small: Deep Constrained Learning for Power Systems
合作研究:RI:小型:电力系统的深度约束学习
  • 批准号:
    2345528
  • 财政年份:
    2023
  • 资助金额:
    $ 22.5万
  • 项目类别:
    Standard Grant
Collaborative Research: RI: Small: Motion Fields Understanding for Enhanced Long-Range Imaging
合作研究:RI:小型:增强远程成像的运动场理解
  • 批准号:
    2232298
  • 财政年份:
    2023
  • 资助金额:
    $ 22.5万
  • 项目类别:
    Standard Grant
Collaborative Research: RI: Small: End-to-end Learning of Fair and Explainable Schedules for Court Systems
合作研究:RI:小型:法院系统公平且可解释的时间表的端到端学习
  • 批准号:
    2232055
  • 财政年份:
    2023
  • 资助金额:
    $ 22.5万
  • 项目类别:
    Standard Grant
Collaborative Research: RI: Medium: Lie group representation learning for vision
协作研究:RI:中:视觉的李群表示学习
  • 批准号:
    2313149
  • 财政年份:
    2023
  • 资助金额:
    $ 22.5万
  • 项目类别:
    Continuing Grant
Collaborative Research: CompCog: RI: Medium: Understanding human planning through AI-assisted analysis of a massive chess dataset
合作研究:CompCog:RI:中:通过人工智能辅助分析海量国际象棋数据集了解人类规划
  • 批准号:
    2312374
  • 财政年份:
    2023
  • 资助金额:
    $ 22.5万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了