MRI: Development of an Observatory for Quantitative Analysis of Collective Behavior in Animals
MRI:开发动物集体行为定量分析观测站
基本信息
- 批准号:1626008
- 负责人:
- 金额:$ 33.92万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2016
- 资助国家:美国
- 起止时间:2016-10-01 至 2019-09-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
This project, developing a new instrument to enable an accurate quantitative analysis of the movement of animals and vocal expressions in real world scenes, aims to facilitate innovative research in the study of animal behavior and neuroscience in complex realistic environments. While much progress has been made investigating brain mechanisms of behavior, these have been limited primarily to studying individual subjects in relatively simple settings. For many social species, including humans, understanding neurobiological processes within the confines of these more complex environments is critical because their brains have evolved to perceive and evaluate signals within a social context. Indeed, today's advances in video capture hardware and storage and in algorithms in computer vision and network science make this facilitation with animals possible. Past work has relied on subjective and time-consuming observations from video streams, which suffer from imprecision, low dimensionality, and the limitations of the expert analyst's sensory discriminability. This instrument will not only automate the process of detecting behaviors but also provide an exact numeric characterization in time and space for each individual in the social group. While not explicitly part of the instrument, the quantitative description provided by our system will allow the ability to correlate social context with neural measurements, a task that may only be accomplished when sufficient spatiotemporal precision has been achieved.The instrument enables research in the behavioral and neural sciences and development of novel algorithms in computer vision and network theory. In the behavioral sciences, the instrumentation allows the generation of network models of social behavior in small groups of animals or humans that can be used to ask questions that can range from how the dynamics of the networks influence sexual selection, reproductive success, and even health messaging to how vocal decision making in individuals gives rise to social dominance hierarchies. In the neural sciences, the precise spatio-temporal information the system would provide can be used to evaluate the neural bases of sensory processing and behavioral decision under precisely defined social contexts. Sensory responses to a given vocal stimulus, for example, can be evaluated by the context in which the animal heard the stimulus and both his and the sender's prior behavioral history in the group. In computer vision, we propose novel approaches for the calibration of multiple cameras "in the wild", the combination of appearance and geometry for the extraction of exact 3D pose and body parts from video, the learning of attentional focus among animals in a group, and the estimation of sound source and the classification of vocalizations. New approaches will be used on hierarchical discovery of behaviors in graphs, the incorporation of interactions beyond the pairwise level with simplicial complices, and a novel theory of graph dynamics for the temporal evolution of social behavior. The instrumentation benefits behavioral and neural scientists. Therefore, the code and algorithms developed will be open-source so that the scientific community can extend them based on the application. The proposed work also impacts computer vision and network science because the fundamental algorithms designed should advance the state of the art. For performance evaluation of other computer vision algorithms, established datasets will be employed.
该项目旨在开发一种新的仪器,能够对真实世界场景中的动物运动和声音表达进行准确的定量分析,旨在促进复杂现实环境中动物行为和神经科学研究的创新研究。虽然对大脑行为机制的研究取得了很大进展,但这些研究主要局限于在相对简单的环境下研究个体。对于包括人类在内的许多社会物种来说,在这些更复杂的环境范围内理解神经生物学过程至关重要,因为他们的大脑已经进化到能够感知和评估社会环境中的信号。事实上,今天在视频捕捉硬件和存储以及计算机视觉和网络科学算法方面的进步使这种与动物的便利成为可能。过去的工作依赖于对视频流的主观和耗时的观察,这些观察受到不精确、低维度和专家分析师感官辨别能力的限制的影响。这一工具不仅将自动检测行为的过程,而且还将在时间和空间上为社会群体中的每个个体提供精确的数字特征。虽然不是仪器的明确组成部分,但我们的系统提供的定量描述将允许将社会背景与神经测量相关联的能力,这一任务只有在达到足够的时空精度时才能完成。该仪器使行为科学和神经科学的研究以及计算机视觉和网络理论的新算法的发展成为可能。在行为科学中,仪器允许在动物或人类的小群体中产生社会行为的网络模型,这些模型可以用来提出各种问题,从网络的动态如何影响性选择,繁殖成功,甚至健康信息,到个人的声音决策如何产生社会统治等级。在神经科学中,该系统提供的精确时空信息可用于评估在精确定义的社会环境下感觉加工和行为决策的神经基础。例如,对特定声音刺激的感觉反应可以通过动物听到刺激的环境以及他和发出者之前在群体中的行为历史来评估。在计算机视觉方面,我们提出了新的方法来校准“野外”的多个摄像机,结合外观和几何形状从视频中提取精确的3D姿势和身体部位,学习一群动物之间的注意力焦点,以及估计声源和分类发声。新方法将用于图中行为的分层发现,结合超越两两水平的简单复合体的相互作用,以及社会行为时间进化的新图动力学理论。该仪器使行为和神经科学家受益。因此,开发的代码和算法将是开源的,以便科学界可以根据应用程序对其进行扩展。提议的工作也会影响计算机视觉和网络科学,因为所设计的基本算法应该推动最先进的技术。对于其他计算机视觉算法的性能评估,将使用已建立的数据集。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Kostas Daniilidis其他文献
Perception-Driven Curiosity with Bayesian Surprise
感知驱动的好奇心与贝叶斯惊喜
- DOI:
- 发表时间:
2019 - 期刊:
- 影响因子:0
- 作者:
Bernadette Bucher;Anton Arapin;Ramanan Sekar;M. Badger;Feifei Duan;Oleh Rybkin;Kostas Daniilidis - 通讯作者:
Kostas Daniilidis
Technical report on Optimization-Based Bearing-Only Visual Homing with Applications to a 2-D Unicycle Model
关于基于优化的仅轴承视觉归位及其在二维独轮车模型中的应用的技术报告
- DOI:
- 发表时间:
2014 - 期刊:
- 影响因子:0
- 作者:
Roberto Tron;Kostas Daniilidis - 通讯作者:
Kostas Daniilidis
Template gradient matching in spherical images
球形图像中的模板梯度匹配
- DOI:
10.1117/12.527043 - 发表时间:
2004 - 期刊:
- 影响因子:0
- 作者:
L. Sorgi;Kostas Daniilidis - 通讯作者:
Kostas Daniilidis
Predicting the Future with Transformational States
用转型国家预测未来
- DOI:
- 发表时间:
2018 - 期刊:
- 影响因子:0
- 作者:
Andrew Jaegle;Oleh Rybkin;K. Derpanis;Kostas Daniilidis - 通讯作者:
Kostas Daniilidis
Live Demonstration: Unsupervised Event-Based Learning of Optical Flow, Depth and Egomotion
现场演示:基于事件的无监督光流、深度和自我运动学习
- DOI:
- 发表时间:
2019 - 期刊:
- 影响因子:0
- 作者:
A. Z. Zhu;Liangzhe Yuan;Kenneth Chaney;Kostas Daniilidis - 通讯作者:
Kostas Daniilidis
Kostas Daniilidis的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Kostas Daniilidis', 18)}}的其他基金
Collaborative Research: Visual Tactile Neural Fields for Active Digital Twin Generation
合作研究:用于主动数字孪生生成的视觉触觉神经场
- 批准号:
2220868 - 财政年份:2022
- 资助金额:
$ 33.92万 - 项目类别:
Standard Grant
RI: Medium: Learning to Map and Navigate with Vision and Language
RI:媒介:学习用视觉和语言绘制地图和导航
- 批准号:
2212433 - 财政年份:2022
- 资助金额:
$ 33.92万 - 项目类别:
Continuing Grant
RI: Medium: Collaborative Research: Closed Loop Perceptual Planning for Dynamic Locomotion
RI:中:协作研究:动态运动的闭环感知规划
- 批准号:
1703319 - 财政年份:2017
- 资助金额:
$ 33.92万 - 项目类别:
Continuing Grant
I/UCRC Phase I: Robots and Sensors for the Human Well-being
I/UCRC 第一阶段:造福人类福祉的机器人和传感器
- 批准号:
1439681 - 财政年份:2014
- 资助金额:
$ 33.92万 - 项目类别:
Continuing Grant
NRI: Small: Collaborative Research: Active Sensing for Robotic Cameramen
NRI:小型:协作研究:机器人摄影师的主动传感
- 批准号:
1317947 - 财政年份:2013
- 资助金额:
$ 33.92万 - 项目类别:
Standard Grant
I-Corps: BlindNav: Indoor Navigation for the Visually Impaired
I-Corps:BlindNav:为视障人士提供室内导航
- 批准号:
1265129 - 财政年份:2012
- 资助金额:
$ 33.92万 - 项目类别:
Standard Grant
CDI-Type II: Collaborative Research: Perception of Scene Layout by Machines and Visually Impaired Users
CDI-Type II:协作研究:机器和视障用户对场景布局的感知
- 批准号:
1028009 - 财政年份:2010
- 资助金额:
$ 33.92万 - 项目类别:
Standard Grant
CDI-Type II: Collaborative Research: Cyber Enhancement of Spatial Cognition for the Visually Impaired
CDI-Type II:协作研究:视觉障碍者空间认知的网络增强
- 批准号:
0835714 - 财政年份:2008
- 资助金额:
$ 33.92万 - 项目类别:
Standard Grant
RI: Collaborative Research: Bio-inspired Navigation
RI:合作研究:仿生导航
- 批准号:
0713260 - 财政年份:2007
- 资助金额:
$ 33.92万 - 项目类别:
Continuing Grant
相似国自然基金
水稻边界发育缺陷突变体abnormal boundary development(abd)的基因克隆与功能分析
- 批准号:32070202
- 批准年份:2020
- 资助金额:58 万元
- 项目类别:面上项目
Development of a Linear Stochastic Model for Wind Field Reconstruction from Limited Measurement Data
- 批准号:
- 批准年份:2020
- 资助金额:40 万元
- 项目类别:
相似海外基金
MRI: Development of a Telemetered Seafloor Seismic Observatory (TeSSO)
MRI:遥测海底地震观测站 (TeSSO) 的开发
- 批准号:
2214269 - 财政年份:2023
- 资助金额:
$ 33.92万 - 项目类别:
Continuing Grant
MRI: Development of an Exoplanet Imaging Spectrograph for Keck Observatory
MRI:为凯克天文台开发系外行星成像光谱仪
- 批准号:
2216481 - 财政年份:2022
- 资助金额:
$ 33.92万 - 项目类别:
Standard Grant
MRI: Development of an Innovative Underwater Robot Testing Facility for the Kilo Nalu Natural Coastal Marine Observatory
MRI:为基洛纳鲁自然沿海海洋观测站开发创新型水下机器人测试设施
- 批准号:
2216518 - 财政年份:2022
- 资助金额:
$ 33.92万 - 项目类别:
Standard Grant
MRI Consortium: Development of Upgraded Stellar Intensity Interferometry Instrumentation for the VERITAS Observatory
MRI 联盟:为 VERITAS 天文台开发升级版恒星强度干涉测量仪器
- 批准号:
2117641 - 财政年份:2021
- 资助金额:
$ 33.92万 - 项目类别:
Standard Grant
MRI: Development of VIRUS2 - A Scalable Integral Field Spectrograph for McDonald Observatory
MRI:开发 VIRUS2 - 麦克唐纳天文台的可扩展整体场摄谱仪
- 批准号:
1532169 - 财政年份:2015
- 资助金额:
$ 33.92万 - 项目类别:
Standard Grant
MRI Development: Upgrading NIRSPEC for a Renaissance in IR Spectroscopy at the W. M. Keck Observatory
MRI 开发:升级 NIRSPEC,实现 W. M. Keck 天文台红外光谱学的复兴
- 批准号:
1532315 - 财政年份:2015
- 资助金额:
$ 33.92万 - 项目类别:
Standard Grant
MRI: Development of the Northeastern University Marine Observatory NETwork (NU MONET)
MRI:东北大学海洋观测站网络(NU MONET)的发展
- 批准号:
1428567 - 财政年份:2014
- 资助金额:
$ 33.92万 - 项目类别:
Standard Grant
Collaborative MRI: Development of Geophysical Earth Observatory for Ice Covered Environments (GEOICE)
协作 MRI:冰雪覆盖环境地球物理地球观测站 (GEOICE) 的开发
- 批准号:
1337548 - 财政年份:2013
- 资助金额:
$ 33.92万 - 项目类别:
Standard Grant
Collaborative MRI: Development of Geophysical Earth Observatory for Ice Covered Environments (GEOICE)
协作 MRI:冰雪覆盖环境地球物理地球观测站 (GEOICE) 的开发
- 批准号:
1337861 - 财政年份:2013
- 资助金额:
$ 33.92万 - 项目类别:
Standard Grant
MRI: Development of a Radar Observatory for Cosmic Ray Air Showers
MRI:宇宙射线空气阵雨雷达观测站的开发
- 批准号:
1126353 - 财政年份:2011
- 资助金额:
$ 33.92万 - 项目类别:
Standard Grant














{{item.name}}会员




