RI: Detecting Boundaries for Segmentation and Recognition
RI:检测分割和识别的边界
基本信息
- 批准号:0713406
- 负责人:
- 金额:$ 32.43万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2007
- 资助国家:美国
- 起止时间:2007-09-01 至 2011-08-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Shape is a powerful visual cue for recognizing objects in images, segmenting images into regions corresponding to individual objects, and, more generally, understanding the 3D structures of scenes. However, to be able to exploit shape information, we need reliable ways of detecting fragments of object boundaries, a difficult problem in itself. This project investigates possible solutions to these problems. Specifically, it explores ways to reliably detect occluding boundaries by focusing on the question of combining motion cues with appearance cues for better detection of occlusion boundaries. In addition, the project explores different ways in which boundaries can be used in key vision tasks by investigating the integration of boundary information in segmentation and category recognition.The project is expected to generate advances in two areas: 1) detecting boundary information from images as shape cues and 2) using boundary information in segmentation and recognition tasks. In the first area, it extends the current approaches for contour detection to include motion cues. This is motivated by the availability of temporal information in many practical applications. Assuming that we can extract boundary fragments, the issue of using them effectively in segmentation and recognition remains an open question. The project will make substantial contributions toward answering that question, including integrating boundary information with image segmentation and recognition algorithms. The project will result in advances that are directly relevant to a wide range of applications. In particular, the ability to reliably detect boundaries from image sequences is crucial in all applications that involve the analysis of videos for object discovery, recognition, and segmentation. The project is also expected to contribute to the development of more reliable category recognition algorithms based on shape representations, an enabling technology in a wide variety of fields including defense, health care, human-computer interaction, image retrieval and data mining, industrial and personal robotics, manufacturing, scientific image analysis, surveillance and security, and transportation. Although the project focuses primarily on automatic segmentation and recognition, it will also contribute to human-assisted segmentation and image editing, a technology area that is becoming increasingly important with the advent of consumer video and image editing tools. An additional expected product of the project is the generation of a corpus of labeled data, including motion data.URL: http://www.cs.cmu.edu/~hebert/boundaries/
形状是一种强大的视觉线索,用于识别图像中的对象,将图像分割成与各个对象对应的区域,以及更一般地理解场景的3D结构。然而,为了能够利用形状信息,我们需要可靠的方法来检测对象边界的碎片,这本身就是一个难题。本项目研究解决这些问题的可能办法。具体来说,它探讨了可靠地检测遮挡边界的方法,通过关注结合运动线索与外观线索的问题,以更好地检测遮挡边界。此外,该项目还通过研究分割和类别识别中边界信息的整合,探索在关键视觉任务中使用边界的不同方式。该项目预计将在两个领域取得进展:1)从图像中检测边界信息作为形状线索; 2)将边界信息用于分割和识别任务。在第一个方面,它扩展了目前的轮廓检测方法,包括运动线索。这是由在许多实际应用中的时间信息的可用性。假设我们可以提取边界片段,在分割和识别中有效地使用它们的问题仍然是一个悬而未决的问题。该项目将为回答这个问题做出重大贡献,包括将边界信息与图像分割和识别算法相结合。 该项目将带来与广泛应用直接相关的进展。特别是,从图像序列中可靠地检测边界的能力在涉及分析视频以进行对象发现、识别和分割的所有应用中至关重要。该项目还将有助于开发基于形状表示的更可靠的类别识别算法,这是一项广泛领域的技术,包括国防,医疗保健,人机交互,图像检索和数据挖掘,工业和个人机器人,制造业,科学图像分析,监控和安全以及运输。虽然该项目主要侧重于自动分割和识别,但它也将有助于人工辅助分割和图像编辑,随着消费者视频和图像编辑工具的出现,这一技术领域变得越来越重要。该项目的另一个预期产品是生成标记数据的语料库,包括运动数据。http://www.cs.cmu.edu/~hebert/boundaries/
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Martial Hebert其他文献
Evolution of a Prototype Lunar Rover: Addition of Laser-Based Hazard Detection, and Results from Field Trials in Lunar Analog Terrain
- DOI:
10.1023/a:1008926000060 - 发表时间:
1999-09-01 - 期刊:
- 影响因子:4.300
- 作者:
Eric Krotkov;Martial Hebert;Lars Henriksen;Paul Levin;Mark Maimone;Reid Simmons;James Teza - 通讯作者:
James Teza
Stereo perception and dead reckoning for a prototype lunar rover
- DOI:
10.1007/bf00710797 - 发表时间:
1995-01-01 - 期刊:
- 影响因子:4.300
- 作者:
Eric Krotkov;Martial Hebert;Reid Simmons - 通讯作者:
Reid Simmons
Intelligent Unmanned Ground Vehicles: Autonomous Navigation Research at Carnegie Mellon
- DOI:
- 发表时间:
1997 - 期刊:
- 影响因子:0
- 作者:
Martial Hebert - 通讯作者:
Martial Hebert
Learning Compositional Representations for Few-Shot Recognition Supplementary Material
学习少镜头识别的组合表示补充材料
- DOI:
- 发表时间:
2019 - 期刊:
- 影响因子:0
- 作者:
P. Tokmakov;Yu;Martial Hebert - 通讯作者:
Martial Hebert
Martial Hebert的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Martial Hebert', 18)}}的其他基金
2015 National Robotics Initiative PI Meeting
2015年国家机器人计划PI会议
- 批准号:
1540080 - 财政年份:2015
- 资助金额:
$ 32.43万 - 项目类别:
Standard Grant
NRI-Large: Collaborative Research: Purposeful Prediction: Co-robot Interaction via Understanding Intent and Goals
NRI-Large:协作研究:有目的的预测:通过理解意图和目标进行协作机器人交互
- 批准号:
1227495 - 财政年份:2012
- 资助金额:
$ 32.43万 - 项目类别:
Continuing Grant
RI: Medium: Collaborative Research: Physically Grounded Object Recognition
RI:媒介:协作研究:物理接地物体识别
- 批准号:
0905402 - 财政年份:2009
- 资助金额:
$ 32.43万 - 项目类别:
Standard Grant
Exploratory Research in Scene Analysis and Object Recognition
场景分析与物体识别的探索性研究
- 批准号:
0745636 - 财政年份:2007
- 资助金额:
$ 32.43万 - 项目类别:
Standard Grant
Volumetric Features for Large-Scale Video Processing
用于大规模视频处理的体积特征
- 批准号:
0534962 - 财政年份:2005
- 资助金额:
$ 32.43万 - 项目类别:
Continuing Grant
Fast Capture and Understanding of Dynamic 3-D Shapes
快速捕捉和理解动态 3D 形状
- 批准号:
0102272 - 财政年份:2001
- 资助金额:
$ 32.43万 - 项目类别:
Continuing Grant
Time and Space-Efficient Template Based Indexing
基于时间和空间高效模板的索引
- 批准号:
9907142 - 财政年份:1999
- 资助金额:
$ 32.43万 - 项目类别:
Continuing Grant
Point-Based Surface Representation for Shape Similarity and Object Recognition
用于形状相似性和对象识别的基于点的表面表示
- 批准号:
9711853 - 财政年份:1997
- 资助金额:
$ 32.43万 - 项目类别:
Continuing Grant
Workshop on Object Representation in Computer Vision
计算机视觉中的对象表示研讨会
- 批准号:
9407040 - 财政年份:1994
- 资助金额:
$ 32.43万 - 项目类别:
Standard Grant
Modeling and Recognizing Three-Dimensional Curved Objects
三维弯曲物体的建模和识别
- 批准号:
9224521 - 财政年份:1993
- 资助金额:
$ 32.43万 - 项目类别:
Continuing Grant
相似海外基金
Statistical Foundations for Detecting Anomalous Structure in Stream Settings (DASS)
检测流设置中的异常结构的统计基础 (DASS)
- 批准号:
EP/Z531327/1 - 财政年份:2024
- 资助金额:
$ 32.43万 - 项目类别:
Research Grant
Collaborative Research: NSF-BSF: SaTC: CORE: Small: Detecting malware with machine learning models efficiently and reliably
协作研究:NSF-BSF:SaTC:核心:小型:利用机器学习模型高效可靠地检测恶意软件
- 批准号:
2338301 - 财政年份:2024
- 资助金额:
$ 32.43万 - 项目类别:
Continuing Grant
In-situ Imaging and Detecting Electron Transfer for Single Site Reaction
单位点反应的原位成像和电子转移检测
- 批准号:
DE240100497 - 财政年份:2024
- 资助金额:
$ 32.43万 - 项目类别:
Discovery Early Career Researcher Award
CAREER: Detecting warming impacts on carbon accumulation across a climate transect of Michigan peatlands
职业:检测变暖对密歇根泥炭地气候断面碳积累的影响
- 批准号:
2338357 - 财政年份:2024
- 资助金额:
$ 32.43万 - 项目类别:
Continuing Grant
Development of Efficient Black Hole Spectroscopy and a Desktop Cluster for Detecting Compact Binary Mergers
开发高效黑洞光谱和用于检测紧凑二元合并的桌面集群
- 批准号:
2412341 - 财政年份:2024
- 资助金额:
$ 32.43万 - 项目类别:
Continuing Grant
Collaborative Research: NSF-BSF: SaTC: CORE: Small: Detecting malware with machine learning models efficiently and reliably
协作研究:NSF-BSF:SaTC:核心:小型:利用机器学习模型高效可靠地检测恶意软件
- 批准号:
2338302 - 财政年份:2024
- 资助金额:
$ 32.43万 - 项目类别:
Continuing Grant
Detecting and deciphering extinction dynamics under environmental change
检测和破译环境变化下的灭绝动态
- 批准号:
DP240102019 - 财政年份:2024
- 资助金额:
$ 32.43万 - 项目类别:
Discovery Projects
CAREER: Detecting Quantum Signatures in Nonadiabatic Molecular Dynamics
职业:检测非绝热分子动力学中的量子特征
- 批准号:
2340180 - 财政年份:2024
- 资助金额:
$ 32.43万 - 项目类别:
Continuing Grant
Open-world computer vision by detecting and tracking hierarchical objects
通过检测和跟踪分层对象来实现开放世界计算机视觉
- 批准号:
DE240100967 - 财政年份:2024
- 资助金额:
$ 32.43万 - 项目类别:
Discovery Early Career Researcher Award
Strategies for Detecting Fibrin Interference
检测纤维蛋白干扰的策略
- 批准号:
23K06851 - 财政年份:2023
- 资助金额:
$ 32.43万 - 项目类别:
Grant-in-Aid for Scientific Research (C)