HCC: Assessing Cognitive Function from Interactive Agent Behavior

HCC:从交互代理行为评估认知功能

基本信息

  • 批准号:
    0713690
  • 负责人:
  • 金额:
    --
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2007
  • 资助国家:
    美国
  • 起止时间:
    2007-10-01 至 2009-05-31
  • 项目状态:
    已结题

项目摘要

This is a project to develop new methods for scientifically studying and assessing human cognitive function. It will employ sophisticated statistical multimodal data analysis techniques that will fuse contextual, behavioral, and neural information simultaneously obtained from human beings in the process of completing complex batteries of cognitive tasks. The tasks will be presented in the form of customized computer games that are designed to exhibit the crucial aspects of established cognitive assessment tests and at the same time provide a motivating and engaging environment for the subject's interactions with the game and computer agents. The tasks will involve exploiting our existing capabilities of monitoring and controlling certain enjoyable and challenging computer games that involve various combinations of cognitive tasks ranging from working memory and attention to executive functions. Multimodal information fusion will be accomplished by utilizing Bayesian inference techniques and information theoretic data analysis and dimensionality reduction methods. The work to be carried out under this grant aims to develop sophisticated pattern analysis techniques for the purpose of analyzing the fine-grain behaviors of elderly when they are engaged in complex cognitive tasks in the form of computer games. Expected significant scientific findings from the proposed research are two-fold: (1) improved statistical signal processing and pattern recognition algorithms for EEG processing, (2) an enhanced understanding of the interplay of multiple cognitive processes and their neural signatures in EEG during the execution of complex tasks. The approach is innovative in terms of three aspects: (1) an advanced adaptive interaction protocol that modifies the task parameters to maintain maximal sensitivity to cognitive state changes will be employed, (2) novel information theoretic techniques will be developed and utilized for the extraction of maximally discriminative features from EEG measurements for cognitive state estimation and neural activity visualization, (3) the developed closed-loop system will be utilized to study the human-agent interaction in complex cognitive tasks resulting in mathematical models of micro-behavior in realistic evolving environments as opposed to traditional stationary repetitive experimental paradigms. The successful completion of the work will open the way to further collaborative activities in brain interface design, closed-loop collaborative augmented cognition human-agent interfaces for improved performance, and early diagnosis of cognitive decline in elderly. An interdisciplinary research environment will engage the participating graduate students in a multidisciplinary educational setting and will help them develop skills to perform collaborative interdisciplinary research.
这是一个开发科学研究和评估人类认知功能的新方法的项目。它将采用复杂的统计多模态数据分析技术,融合上下文、行为和神经信息,同时从人类完成复杂的认知任务的过程中获得。这些任务将以定制的电脑游戏的形式呈现,旨在展示已建立的认知评估测试的关键方面,同时为受试者与游戏和计算机代理的互动提供一个激励和吸引人的环境。这些任务将涉及利用我们现有的监控和控制某些有趣和具有挑战性的电脑游戏的能力,这些游戏涉及从工作记忆和注意力到执行功能的各种认知任务组合。多模态信息融合将利用贝叶斯推理技术、信息论数据分析和降维方法来实现。这项资助的目的是发展复杂的模式分析技术,以分析长者在电脑游戏中进行复杂认知任务时的细微行为。本研究预计将取得两方面的重大科学成果:(1)改进脑电图处理的统计信号处理和模式识别算法;(2)增强对复杂任务执行过程中脑电图中多个认知过程及其神经特征的相互作用的理解。该方法的创新性体现在三个方面:(1)将采用一种先进的自适应交互协议,修改任务参数以保持对认知状态变化的最大敏感性;(2)将开发新的信息理论技术,并将其用于从脑电图测量中提取最大判别特征,用于认知状态估计和神经活动可视化;(3)开发的闭环系统将用于研究复杂认知任务中的人与智能体相互作用,从而建立现实进化环境中微观行为的数学模型,而不是传统的固定重复实验范式。这项工作的成功完成将为进一步开展脑接口设计、闭环协同增强认知人机界面以提高性能、早期诊断老年人认知能力下降等方面的协作活动开辟道路。跨学科的研究环境将使参与的研究生参与到多学科的教育环境中,并将帮助他们发展进行跨学科合作研究的技能。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Deniz Erdogmus其他文献

Information Regularized Sensor Fusion: Application to Localization With Distributed Motion Sensors
Uncertainty in the diagnosis of preplus disease in retinopathy of prematurity (ROP)
  • DOI:
    10.1016/j.jaapos.2015.07.075
  • 发表时间:
    2015-08-01
  • 期刊:
  • 影响因子:
  • 作者:
    Allison R. Loh;Michael Ryan;Katherine Abrahams;Esra Cansizoglu;R.V. Paul Chan;Audina Berrocal;Jayashree Kalpathy;Veronica Bolon;Deniz Erdogmus;Michael F. Chiang
  • 通讯作者:
    Michael F. Chiang
M2M-InvNet: Human Motor Cortex Mapping From Multi-Muscle Response Using TMS and Generative 3D Convolutional Network
M2M-InvNet:使用 TMS 和生成 3D 卷积网络根据多肌肉响应进行人类运动皮层映射
Fast Estimation of Morphing Wing Flight Dynamics Using Neural Networks and Cubature Rules
使用神经网络和体积规则快速估计变形机翼飞行动力学
Guest Editorial for Special Issue on the 2005 IEEE Workshop on Machine Learning for Signal Processing

Deniz Erdogmus的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Deniz Erdogmus', 18)}}的其他基金

CHS: Small: Collaborative Research: EEG-Guided Electrical Stimulation for Immersive Virtual Reality
CHS:小型:合作研究:脑电图引导的沉浸式虚拟现实电刺激
  • 批准号:
    1715858
  • 财政年份:
    2017
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
I-Corps: Assistive Context Aware Interface
I-Corps:辅助情境感知界面
  • 批准号:
    1658790
  • 财政年份:
    2016
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
CPS: TTP Option: Synergy: Collaborative Research: Nested Control of Assistive Robots through Human Intent Inference
CPS:TTP 选项:协同:协作研究:通过人类意图推理对辅助机器人进行嵌套控制
  • 批准号:
    1544895
  • 财政年份:
    2015
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
CAREER: Signal Models, Channel Capacity, and Information Rate for Noninvasive Brain Interfaces
职业:无创脑接口的信号模型、通道容量和信息率
  • 批准号:
    1149570
  • 财政年份:
    2012
  • 资助金额:
    --
  • 项目类别:
    Continuing Grant
Collaborative Research: CDI-Type I: Computational Models for the Automatic Recognition of Non-Human Primate Social Behaviors
合作研究:CDI-Type I:自动识别非人类灵长类动物社会行为的计算模型
  • 批准号:
    1027724
  • 财政年份:
    2010
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
HCC-Small: RSVP IconCHAT - A Brain Computer Interface for Icon-based Communication
HCC-Small:RSVP IconCHAT - 用于基于图标的通信的脑机接口
  • 批准号:
    0914808
  • 财政年份:
    2009
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
HCC: Assessing Cognitive Function from Interactive Agent Behavior
HCC:从交互代理行为评估认知功能
  • 批准号:
    0934509
  • 财政年份:
    2008
  • 资助金额:
    --
  • 项目类别:
    Continuing Grant
Nonparametric Nonlinear Adaptive Detection and Estimation
非参数非线性自适应检测和估计
  • 批准号:
    0934506
  • 财政年份:
    2008
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
Robust Information Filtering Techniques for Static and Dynamic State Estimation
用于静态和动态估计的鲁棒信息过滤技术
  • 批准号:
    0929576
  • 财政年份:
    2008
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
Nonparametric Nonlinear Adaptive Detection and Estimation
非参数非线性自适应检测和估计
  • 批准号:
    0622239
  • 财政年份:
    2006
  • 资助金额:
    --
  • 项目类别:
    Standard Grant

相似海外基金

Assessing and Improving the Durability of Compensatory Cognitive Training for Older Veterans (AID-CCT)
评估和提高老年退伍军人补偿性认知训练的持久性 (AID-CCT)
  • 批准号:
    10636523
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
Assessing the feasibility and acceptability of a Time Restricted Feeding intervention among older adults with Mild Cognitive Impairment
评估对患有轻度认知障碍的老年人进行限制时间喂养干预的可行性和可接受性
  • 批准号:
    10583672
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
Psychological Approaches to Radiological Training: Assessing cognitive mechanisms underlying medical-image perception and developing a novel training
放射训练的心理学方法:评估医学图像感知的认知机制并开发新颖的训练
  • 批准号:
    2741124
  • 财政年份:
    2022
  • 资助金额:
    --
  • 项目类别:
    Studentship
SBIR Phase I: A mobile, device-based, screening tool for assessing K-6 students’ cognitive and motor skills via machine learning handwriting analysis
SBIR 第一阶段:一种基于设备的移动筛选工具,用于通过机器学习笔迹分析评估 K-6 学生的认知和运动技能
  • 批准号:
    2111898
  • 财政年份:
    2022
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
Project 4: Precision Methods for Assessing Brain Health and Age-related Cognitive Impairment
项目 4:评估大脑健康和年龄相关认知障碍的精确方法
  • 批准号:
    10270198
  • 财政年份:
    2021
  • 资助金额:
    --
  • 项目类别:
Project 4: Precision Methods for Assessing Brain Health and Age-related Cognitive Impairment
项目 4:评估大脑健康和年龄相关认知障碍的精确方法
  • 批准号:
    10689327
  • 财政年份:
    2021
  • 资助金额:
    --
  • 项目类别:
Project 4: Precision Methods for Assessing Brain Health and Age-related Cognitive Impairment
项目 4:评估大脑健康和年龄相关认知障碍的精确方法
  • 批准号:
    10491883
  • 财政年份:
    2021
  • 资助金额:
    --
  • 项目类别:
Interactive Software for Assessing Meaningful Cognitive Function
用于评估有意义的认知功能的交互式软件
  • 批准号:
    10323851
  • 财政年份:
    2021
  • 资助金额:
    --
  • 项目类别:
Developing and Assessing Engineering Students' Cognitive Flexibility in the Domain of Sustainable Design
开发和评估工科学生在可持续设计领域的认知灵活性
  • 批准号:
    2038244
  • 财政年份:
    2020
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
Assessing the interactive effect of lifetime and old age cognitive engagement on cognitive decline and dementia: cognitive reserve versus use it or lose it
评估终生和老年认知参与对认知衰退和痴呆的交互影响:认知储备与使用它或失去它
  • 批准号:
    10447680
  • 财政年份:
    2020
  • 资助金额:
    --
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了