CAREER: Signal Models, Channel Capacity, and Information Rate for Noninvasive Brain Interfaces

职业:无创脑接口的信号模型、通道容量和信息率

基本信息

  • 批准号:
    1149570
  • 负责人:
  • 金额:
    $ 50.46万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2012
  • 资助国家:
    美国
  • 起止时间:
    2012-02-01 至 2019-01-31
  • 项目状态:
    已结题

项目摘要

The PI's ultimate research goal is to empower people with severe speech and physical impairments so they can live their lives to the fullest extent independently and productively. To this end, he will in this project exploit and advance emerging brain computer interface (BCI) technology by rigorously developing macro-level dynamic models for the visual evoked potentials (VEP) in the brain measured by electroencephalography (EEG) in the context of BCI design. The models will enable a communication channel interpretation of the BCI and will allow analysis and design breakthroughs stemming from the application of information theory and digital communication concepts. Cortical dynamics and background processes will be modeled using a probabilistic dynamic framework at a spatiotemporal scale appropriate for BCI analysis and design. Model-based performance limits on bandwidth and calibration accuracy will then be determined, in order to develop better information coding techniques for optimal communication bandwidth (speed) utilization and better subject training and model calibration procedures for best accuracy return on investment of effort. Prototype real-time applications that operate at optimal or near-optimal performance levels utilizing the developed theoretical advancements for communication and control will be implemented, to enable access by and support independence for the target user groups. Project outcomes will disrupt the trend of black-box BCI design by building dynamic system models for stimulus-to-EEG systems encountered in BCI applications, and treating them as stochastic communication channels in order to characterize signals accordingly and to employ information theoretic approaches to analysis and design. This novel theoretical framework will enable model-based quantitative characterization of BCI performance limits and will allow the design of optimal or near-optimal coding/decoding strategies as well as improved calibration procedures that will have immediate impact on increasing bandwidth and intent detection accuracy, as well as calibration duration reduction in BCI systems - primary barriers between laboratory prototypes and real-world-worthy BCI products.Broader Impacts: If successful this project will advance BCI technology to the next level, thereby revolutionizing human computer interaction and empowering persons with physical disabilities by enabling seamless control of computers and devices. The project will afford, through collaboration with the Center for Subsurface Sensing and Imaging Systems (CenSSIS) at Northeastern University as well as colleagues across departments and institutions, opportunities to both undergraduate engineering and non-engineering majors for enhanced learning and collaboration skills by immersing them in interdisciplinary cutting-edge research and design projects with societal impact. The PI will engage high school students and teachers in the research through his institution's Center for STEM Education. And he will inform the broader public of ongoing technological advances in the BCI field and raise disability awareness through collaboration with the Cahners ComputerPlace at the Boston Museum of Science.
PI的最终研究目标是使有严重语言和身体障碍的人能够独立和富有成效地生活。 为此,他将在该项目中开发和推进新兴的脑机接口(BCI)技术,通过严格开发脑电描记术(EEG)在BCI设计背景下测量的大脑视觉诱发电位(VEP)的宏观动态模型。 这些模型将使BCI的通信信道解释成为可能,并将使信息理论和数字通信概念的应用所产生的分析和设计突破成为可能。 皮质动力学和背景过程将使用概率动态框架在适合BCI分析和设计的时空尺度上建模。 然后,将确定基于模型的带宽和校准精度的性能限制,以便开发更好的信息编码技术,以实现最佳通信带宽(速度)利用率,并开发更好的受试者培训和模型校准程序,以实现最佳精度投资回报。 原型实时应用程序,运行在最佳或接近最佳的性能水平,利用开发的理论进步的通信和控制将被实施,使访问和支持独立的目标用户群。 项目成果将打破黑箱BCI设计的趋势,为BCI应用中遇到的刺激-EEG系统建立动态系统模型,并将其视为随机通信通道,以相应地表征信号,并采用信息论方法进行分析和设计。 这种新颖的理论框架将实现BCI性能极限的基于模型的定量表征,并将允许设计最佳或接近最佳的编码/解码策略以及改进的校准程序,这将对增加带宽和意图检测准确性产生直接影响。以及BCI系统中校准持续时间的减少-实验室原型和现实世界之间的主要障碍-更广泛的影响: 如果成功,该项目将把BCI技术推进到一个新的水平,从而彻底改变人机交互,并通过实现对计算机和设备的无缝控制来增强身体残疾人的能力。 该项目将通过与东北大学地下传感和成像系统中心(CenSSIS)以及各部门和机构的同事合作,为本科工程和非工程专业的学生提供机会,通过让他们沉浸在具有社会影响力的跨学科前沿研究和设计项目中,增强学习和协作技能。 PI将通过其机构的STEM教育中心让高中学生和教师参与研究。 他还将通过与波士顿科学博物馆的Cahners ComputerPlace合作,向更广泛的公众介绍BCI领域正在取得的技术进步,并提高对残疾人的认识。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Deniz Erdogmus其他文献

Information Regularized Sensor Fusion: Application to Localization With Distributed Motion Sensors
Uncertainty in the diagnosis of preplus disease in retinopathy of prematurity (ROP)
  • DOI:
    10.1016/j.jaapos.2015.07.075
  • 发表时间:
    2015-08-01
  • 期刊:
  • 影响因子:
  • 作者:
    Allison R. Loh;Michael Ryan;Katherine Abrahams;Esra Cansizoglu;R.V. Paul Chan;Audina Berrocal;Jayashree Kalpathy;Veronica Bolon;Deniz Erdogmus;Michael F. Chiang
  • 通讯作者:
    Michael F. Chiang
M2M-InvNet: Human Motor Cortex Mapping From Multi-Muscle Response Using TMS and Generative 3D Convolutional Network
M2M-InvNet:使用 TMS 和生成 3D 卷积网络根据多肌肉响应进行人类运动皮层映射
Fast Estimation of Morphing Wing Flight Dynamics Using Neural Networks and Cubature Rules
使用神经网络和体积规则快速估计变形机翼飞行动力学
Plus disease: is it more than meets the ICROP?
  • DOI:
    10.1016/j.jaapos.2016.07.008
  • 发表时间:
    2016-08-01
  • 期刊:
  • 影响因子:
  • 作者:
    John P. Campbell;Esra Ataer-Cansizoglu;Veronica Bolon-Canedo;Deniz Erdogmus;Jayashree Kalpathy-Cramer;Samir Patel;R.V.P. Chan;Michael F. Chiang
  • 通讯作者:
    Michael F. Chiang

Deniz Erdogmus的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Deniz Erdogmus', 18)}}的其他基金

CHS: Small: Collaborative Research: EEG-Guided Electrical Stimulation for Immersive Virtual Reality
CHS:小型:合作研究:脑电图引导的沉浸式虚拟现实电刺激
  • 批准号:
    1715858
  • 财政年份:
    2017
  • 资助金额:
    $ 50.46万
  • 项目类别:
    Standard Grant
I-Corps: Assistive Context Aware Interface
I-Corps:辅助情境感知界面
  • 批准号:
    1658790
  • 财政年份:
    2016
  • 资助金额:
    $ 50.46万
  • 项目类别:
    Standard Grant
CPS: TTP Option: Synergy: Collaborative Research: Nested Control of Assistive Robots through Human Intent Inference
CPS:TTP 选项:协同:协作研究:通过人类意图推理对辅助机器人进行嵌套控制
  • 批准号:
    1544895
  • 财政年份:
    2015
  • 资助金额:
    $ 50.46万
  • 项目类别:
    Standard Grant
Collaborative Research: CDI-Type I: Computational Models for the Automatic Recognition of Non-Human Primate Social Behaviors
合作研究:CDI-Type I:自动识别非人类灵长类动物社会行为的计算模型
  • 批准号:
    1027724
  • 财政年份:
    2010
  • 资助金额:
    $ 50.46万
  • 项目类别:
    Standard Grant
HCC-Small: RSVP IconCHAT - A Brain Computer Interface for Icon-based Communication
HCC-Small:RSVP IconCHAT - 用于基于图标的通信的脑机接口
  • 批准号:
    0914808
  • 财政年份:
    2009
  • 资助金额:
    $ 50.46万
  • 项目类别:
    Standard Grant
HCC: Assessing Cognitive Function from Interactive Agent Behavior
HCC:从交互代理行为评估认知功能
  • 批准号:
    0934509
  • 财政年份:
    2008
  • 资助金额:
    $ 50.46万
  • 项目类别:
    Continuing Grant
Nonparametric Nonlinear Adaptive Detection and Estimation
非参数非线性自适应检测和估计
  • 批准号:
    0934506
  • 财政年份:
    2008
  • 资助金额:
    $ 50.46万
  • 项目类别:
    Standard Grant
Robust Information Filtering Techniques for Static and Dynamic State Estimation
用于静态和动态估计的鲁棒信息过滤技术
  • 批准号:
    0929576
  • 财政年份:
    2008
  • 资助金额:
    $ 50.46万
  • 项目类别:
    Standard Grant
HCC: Assessing Cognitive Function from Interactive Agent Behavior
HCC:从交互代理行为评估认知功能
  • 批准号:
    0713690
  • 财政年份:
    2007
  • 资助金额:
    $ 50.46万
  • 项目类别:
    Continuing Grant
Nonparametric Nonlinear Adaptive Detection and Estimation
非参数非线性自适应检测和估计
  • 批准号:
    0622239
  • 财政年份:
    2006
  • 资助金额:
    $ 50.46万
  • 项目类别:
    Standard Grant

相似国自然基金

一种检测结核分枝杆菌抗原标志物的方法学研究——基于signal-on型电化学适体检测体系的构建及应用
  • 批准号:
    81601856
  • 批准年份:
    2016
  • 资助金额:
    17.0 万元
  • 项目类别:
    青年科学基金项目
Apoptosis signal-regulating kinase 1是七氟烷抑制小胶质细胞活化的关键分子靶点?
  • 批准号:
    81301123
  • 批准年份:
    2013
  • 资助金额:
    23.0 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

Finding NEMO's Switchable MRI Signal Using Microfluidic Tumor Models
使用微流控肿瘤模型寻找 NEMO 的可切换 MRI 信号
  • 批准号:
    10652001
  • 财政年份:
    2023
  • 资助金额:
    $ 50.46万
  • 项目类别:
The noise is the signal: exploring physico-chemical fluctuations with multiscale experimental models
噪音就是信号:用多尺度实验模型探索物理化学波动
  • 批准号:
    EP/X02492X/1
  • 财政年份:
    2022
  • 资助金额:
    $ 50.46万
  • 项目类别:
    Research Grant
Exploring Signal Detection via Multitaper Transfer Function Estimates: Extension to a Generalized Framework of Time Series Regression Models and Applications
通过多锥度传递函数估计探索信号检测:扩展到时间序列回归模型和应用的通用框架
  • 批准号:
    570341-2022
  • 财政年份:
    2022
  • 资助金额:
    $ 50.46万
  • 项目类别:
    Alexander Graham Bell Canada Graduate Scholarships - Doctoral
Model-predictive Control Methods with Learned Models for Traffic Signal Control
具有学习模型的交通信号控制模型预测控制方法
  • 批准号:
    572594-2022
  • 财政年份:
    2022
  • 资助金额:
    $ 50.46万
  • 项目类别:
    University Undergraduate Student Research Awards
Signal Processing and Information Extraction, from Data to Complex Models and Structures
信号处理和信息提取,从数据到复杂模型和结构
  • 批准号:
    RGPIN-2018-04079
  • 财政年份:
    2022
  • 资助金额:
    $ 50.46万
  • 项目类别:
    Discovery Grants Program - Individual
Signal Processing and Information Extraction, from Data to Complex Models and Structures
信号处理和信息提取,从数据到复杂模型和结构
  • 批准号:
    RGPIN-2018-04079
  • 财政年份:
    2021
  • 资助金额:
    $ 50.46万
  • 项目类别:
    Discovery Grants Program - Individual
The noise is the signal: exploring physico-chemical fluctuations with multiscale experimental models
噪音就是信号:用多尺度实验模型探索物理化学波动
  • 批准号:
    EP/V056999/1
  • 财政年份:
    2021
  • 资助金额:
    $ 50.46万
  • 项目类别:
    Fellowship
Signal Processing and Information Extraction, from Data to Complex Models and Structures
信号处理和信息提取,从数据到复杂模型和结构
  • 批准号:
    RGPIN-2018-04079
  • 财政年份:
    2020
  • 资助金额:
    $ 50.46万
  • 项目类别:
    Discovery Grants Program - Individual
Signal Processing and Information Extraction, from Data to Complex Models and Structures
信号处理和信息提取,从数据到复杂模型和结构
  • 批准号:
    RGPIN-2018-04079
  • 财政年份:
    2019
  • 资助金额:
    $ 50.46万
  • 项目类别:
    Discovery Grants Program - Individual
Signal and Data Processing Based on Statistical and Graphical Models
基于统计和图形模型的信号和数据处理
  • 批准号:
    RGPIN-2015-04483
  • 财政年份:
    2019
  • 资助金额:
    $ 50.46万
  • 项目类别:
    Discovery Grants Program - Individual
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了