Fast and Accurate High Dimensional Function Approximation

快速准确的高维函数逼近

基本信息

  • 批准号:
    0713848
  • 负责人:
  • 金额:
    --
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2007
  • 资助国家:
    美国
  • 起止时间:
    2007-07-15 至 2011-06-30
  • 项目状态:
    已结题

项目摘要

This research will develop computational methods to approximate functions of many variables based on function values which may be contaminated by noise. The focus will be on kernel-based methods, such as radial basis function methods, smoothing splines, regression splines and moving least squares methods. Non-isotropic kernels, space filling designs, and new convergence proofs will be used to make these methods practical in higher dimensions. Fast transform and iterative algorithms will be developed to reduce the computational burden of kernel methods. Both computational and statistical approaches will be brought to bear on this problem. The theoretical development will provide practitioners insight into how the quality of the designs (sample points) affects the accuracy of approximation. The algorithms developed will be published as software packages for widespread use. In this information age there is an abundance of data generated from instrumental measurements and computer simulations. Strategic corporate planning and profitable product design both rely on accurate mathematical models to describe this data. As the numbers of observations and variables increase, existing methods for computing the best models fail to capture the complex relationships and fail to compute an answer in a reasonable amount of time. This research will develop a new generation of computational methods for modeling data that overcome these drawbacks. These new methods will make our manufacturing industry more competitive by facilitating more rapid prototyping of products, and they will enable our service industry to assess and respond more quickly to changing markets.
本研究将开发计算方法,以近似的函数值,可能会被噪声污染的基础上的许多变量的函数。 重点将放在基于核的方法上,如径向基函数方法、平滑样条、回归样条和移动最小二乘法。 非各向同性内核,空间填充设计,和新的收敛性证明将用于使这些方法在更高的维度实用。 快速变换和迭代算法将被开发以减少核方法的计算负担。 计算方法和统计方法都将用来解决这个问题。 理论的发展将为从业者提供深入了解设计(样本点)的质量如何影响近似的准确性。 开发的算法将作为软件包出版,供广泛使用。在这个信息时代,有大量的数据来自仪器测量和计算机模拟。 战略性企业规划和盈利性产品设计都依赖于准确的数学模型来描述这些数据。 随着观测和变量数量的增加,现有的计算最佳模型的方法无法捕捉复杂的关系,也无法在合理的时间内计算出答案。 这项研究将开发新一代的计算方法来建模数据,克服这些缺点。这些新方法可使制造业更迅速地制造产品原型,从而提高其竞争力。此外,这些新方法亦可使服务业更迅速地评估不断转变的市场,并作出回应。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Fred Hickernell其他文献

Fred Hickernell的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Fred Hickernell', 18)}}的其他基金

Collaborative Research: Cost-Efficient and Confident Sampling for Modern Scientific Discovery
协作研究:现代科学发现的成本高效且可靠的采样
  • 批准号:
    2316011
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
Stable, Efficient, Adaptive Algorithms for Approximation and Integration
稳定、高效、自适应的逼近和积分算法
  • 批准号:
    1522687
  • 财政年份:
    2015
  • 资助金额:
    --
  • 项目类别:
    Continuing Grant
Kernel Methods for Numerical Computation
数值计算的核方法
  • 批准号:
    1115392
  • 财政年份:
    2011
  • 资助金额:
    --
  • 项目类别:
    Continuing Grant

相似海外基金

CAREER: Enabling the Accurate Simulation of Multi-Dimensional Core-Level Spectroscopies in Molecular Complexes using Time-Dependent Density Functional Theory
职业:使用瞬态密度泛函理论实现分子复合物中多维核心级光谱的精确模拟
  • 批准号:
    2337902
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
Accurate and Efficient Computational Methods for the Numerical Solution of High-Dimensional Partial Differential Equations in Computational Finance
计算金融中高维偏微分方程数值解的准确高效计算方法
  • 批准号:
    569181-2022
  • 财政年份:
    2022
  • 资助金额:
    --
  • 项目类别:
    Postgraduate Scholarships - Doctoral
Accurate perception of dimensional descriptors of body size and shape using depth cameras
使用深度相机准确感知身体尺寸和形状的维度描述符
  • 批准号:
    525948-2018
  • 财政年份:
    2018
  • 资助金额:
    --
  • 项目类别:
    University Undergraduate Student Research Awards
Beyond DFT: Accurate Simulations of Low Dimensional Materials For Energy and Device Applications
超越 DFT:能源和设备应用中低维材料的精确模拟
  • 批准号:
    1726213
  • 财政年份:
    2018
  • 资助金额:
    --
  • 项目类别:
    Continuing Grant
Development of highly accurate and high-speed three dimensional object profiling system by using optical frequency-swept laser light
利用光学扫频激光开发高精度、高速三维物体分析系统
  • 批准号:
    17K06457
  • 财政年份:
    2017
  • 资助金额:
    --
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Accurate inference in high-dimensional econometrics
高维计量经济学的精确推理
  • 批准号:
    1923060
  • 财政年份:
    2017
  • 资助金额:
    --
  • 项目类别:
    Studentship
High performance optical scanning of radiochromic material for accurate three-dimensional radiation dosimetry
放射变色材料的高性能光学扫描,用于精确的三维辐射剂量测定
  • 批准号:
    489523-2016
  • 财政年份:
    2017
  • 资助金额:
    --
  • 项目类别:
    Alexander Graham Bell Canada Graduate Scholarships - Doctoral
Accurate Moving Object Tracking Using Optimal Multi-Dimensional Sensor Fusion
使用最佳多维传感器融合进行准确的移动物体跟踪
  • 批准号:
    16K16093
  • 财政年份:
    2016
  • 资助金额:
    --
  • 项目类别:
    Grant-in-Aid for Young Scientists (B)
High performance optical scanning of radiochromic material for accurate three-dimensional radiation dosimetry
放射变色材料的高性能光学扫描,用于精确的三维辐射剂量测定
  • 批准号:
    489523-2016
  • 财政年份:
    2016
  • 资助金额:
    --
  • 项目类别:
    Alexander Graham Bell Canada Graduate Scholarships - Doctoral
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了