Kernel Methods for Numerical Computation

数值计算的核方法

基本信息

  • 批准号:
    1115392
  • 负责人:
  • 金额:
    $ 32万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2011
  • 资助国家:
    美国
  • 起止时间:
    2011-07-01 至 2014-06-30
  • 项目状态:
    已结题

项目摘要

The PI's research provides a deeper understanding of kernel methods for multivariate function approximation problems. There are five main research thrusts. The first is to derive dimension-independent error bounds for kernel methods based on noisy and noiseless data. The second is to investigate which designs (arrangements of data sites) achieve these error bounds. The third is to use Green's functions to develop a better understanding of the inherent native spaces associated with the kernels used. The fourth is to use the kernel eigenfunction expansions to construct numerically stable evaluation algorithms for kernel approximation. The final thrust is to develop fast evaluation algorithms for kernel approximation, again using the eigenfunction expansions. The theoretical development provides practitioners in academia and industry insight and support for the development of numerical simulation algorithms in such application areas as materials engineering, complex fluid flow simulations, and nuclear reactor simulation. The investigators partner with software developers such as Matlab, NAG and JMP statistical software to have their algorithms included in future releases of these software packages. This research is being disseminated among the mathematics, statistical, and engineering communities to build bridges between them. In particular, the investigators are presenting tutorial courses on kernel methods to national and international audiences. The research findings are taught in several graduate courses that routinely draw students from applied mathematics, engineering and business. One key priority is to engage students in computational mathematics research as early as possible in the form of an REU experience and thereby develop a pipeline of young computational mathematicians for academia or industry. The investigators stress the inclusion of students from underrepresented minorities and from universities in the Chicago area that do not provide computational research opportunities to their students.Computation is an indispensable tool for solving a variety of scientific, engineering, and societal problems. However, accurate and timely answers require computational algorithms that are well understood and properly applied. This research focuses on the fundamental problem of inferring the function that relates multiple inputs to an output, e.g., the way in which values of tens of engineering design parameters determine the temperature inside a nuclear reactor. Kernel methods are flexible and accurate in certain settings, but their applicability for large numbers of inputs, as in the example just given, is not understood. The PI's research addresses this issue. Success means that the number of time-intensive computer simulations needed to understand complex processes can be reduced, and be replaced by a surrogate constructed via kernel methods. This research shows how to plan the computer simulations for maximum accuracy. Moreover, the methods for constructing this surrogate more quickly are developed. Because of the fundamental nature of this research, the findings are expected to influence general purpose numerical computation packages used by many engineers and scientists involved in the fields of energy, manufacturing, and nanotechnology. By including not only PhD students, but also MS and BS students, this research project is preparing the next generation of computational scientists, who are needed to support our continued technological and economic growth.
PI的研究为多元函数逼近问题的核方法提供了更深入的理解。有五个主要的研究方向。第一个是推导基于噪声和无噪声数据的核方法的与维数无关的误差界。第二个是调查哪些设计(数据站点的安排)达到这些误差范围。第三个是使用绿色的功能,以开发与所使用的内核相关的固有的原生空间的更好的理解。第四是利用核特征函数展开式构造数值稳定的核近似计算算法。最后的推力是开发快速评估算法的内核近似,再次使用本征函数展开。理论的发展为学术界和工业界的从业人员提供了见解,并为材料工程,复杂流体流动模拟和核反应堆模拟等应用领域的数值模拟算法的发展提供了支持。研究人员与Matlab、NAG和JMP统计软件等软件开发人员合作,将其算法纳入这些软件包的未来版本中。这项研究正在数学,统计和工程社区之间传播,以建立它们之间的桥梁。特别是,调查人员正在向国家和国际受众提供关于核心方法的辅导课程。研究结果在几门研究生课程中教授,这些课程通常吸引来自应用数学,工程和商业的学生。一个关键的优先事项是让学生尽早以REU经验的形式参与计算数学研究,从而为学术界或工业界培养一批年轻的计算数学家。调查者强调,要把那些来自少数民族的学生和来自芝加哥地区不提供计算研究机会的大学的学生包括进来。计算是解决各种科学、工程和社会问题的不可或缺的工具。 然而,准确和及时的答案需要很好地理解和正确应用的计算算法。 本研究的重点是推断将多个输入与输出相关联的函数的基本问题,例如,数十个工程设计参数的值决定核反应堆内部温度的方式。 核方法在某些情况下是灵活和准确的,但它们对大量输入的适用性,如刚才给出的例子,还不清楚。 PI的研究解决了这个问题。 成功意味着可以减少理解复杂过程所需的时间密集型计算机模拟的数量,并由通过内核方法构建的代理所取代。 这项研究展示了如何规划计算机模拟以获得最大的准确性。 此外,更快地构造该代理的方法被开发。 由于这项研究的基本性质,这些发现预计将影响许多工程师和科学家在能源,制造和纳米技术领域使用的通用数值计算包。 通过不仅包括博士生,而且还包括MS和BS学生,该研究项目正在为下一代计算科学家做准备,他们需要支持我们的持续技术和经济增长。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Fred Hickernell其他文献

Fred Hickernell的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Fred Hickernell', 18)}}的其他基金

Collaborative Research: Cost-Efficient and Confident Sampling for Modern Scientific Discovery
协作研究:现代科学发现的成本高效且可靠的采样
  • 批准号:
    2316011
  • 财政年份:
    2023
  • 资助金额:
    $ 32万
  • 项目类别:
    Standard Grant
Stable, Efficient, Adaptive Algorithms for Approximation and Integration
稳定、高效、自适应的逼近和积分算法
  • 批准号:
    1522687
  • 财政年份:
    2015
  • 资助金额:
    $ 32万
  • 项目类别:
    Continuing Grant
Fast and Accurate High Dimensional Function Approximation
快速准确的高维函数逼近
  • 批准号:
    0713848
  • 财政年份:
    2007
  • 资助金额:
    $ 32万
  • 项目类别:
    Continuing Grant

相似国自然基金

Computational Methods for Analyzing Toponome Data
  • 批准号:
    60601030
  • 批准年份:
    2006
  • 资助金额:
    17.0 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

Conference: Mathematical models and numerical methods for multiphysics problems
会议:多物理问题的数学模型和数值方法
  • 批准号:
    2347546
  • 财政年份:
    2024
  • 资助金额:
    $ 32万
  • 项目类别:
    Standard Grant
Theoretical Guarantees of Machine Learning Methods for High Dimensional Partial Differential Equations: Numerical Analysis and Uncertainty Quantification
高维偏微分方程机器学习方法的理论保证:数值分析和不确定性量化
  • 批准号:
    2343135
  • 财政年份:
    2023
  • 资助金额:
    $ 32万
  • 项目类别:
    Standard Grant
Nonlinear logarithmic difference operators and their application to structure-preserving numerical methods
非线性对数差分算子及其在保结构数值方法中的应用
  • 批准号:
    23K17655
  • 财政年份:
    2023
  • 资助金额:
    $ 32万
  • 项目类别:
    Grant-in-Aid for Challenging Research (Exploratory)
Topological-based numerical methods for real-world problems
针对现实世界问题的基于拓扑的数值方法
  • 批准号:
    2882199
  • 财政年份:
    2023
  • 资助金额:
    $ 32万
  • 项目类别:
    Studentship
eMB: Collaborative Research: Mechanistic models for seasonal avian migration: Analysis, numerical methods, and data analytics
eMB:协作研究:季节性鸟类迁徙的机制模型:分析、数值方法和数据分析
  • 批准号:
    2325195
  • 财政年份:
    2023
  • 资助金额:
    $ 32万
  • 项目类别:
    Standard Grant
Developments and Applications of Numerical Verification Methods for Finite Element Approximation of Differential Equations
微分方程有限元逼近数值验证方法的发展与应用
  • 批准号:
    23K03232
  • 财政年份:
    2023
  • 资助金额:
    $ 32万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Development of numerical methods for solving unsteady shock waves stably and correctly and its application to shock wave interaction phenomena
稳定正确求解非定常冲击波数值方法的发展及其在冲击波相互作用现象中的应用
  • 批准号:
    23KJ0981
  • 财政年份:
    2023
  • 资助金额:
    $ 32万
  • 项目类别:
    Grant-in-Aid for JSPS Fellows
CAREER: Numerical Analysis for Meshfree and Particle Methods via Nonlocal Models
职业:通过非局部模型进行无网格和粒子方法的数值分析
  • 批准号:
    2240180
  • 财政年份:
    2023
  • 资助金额:
    $ 32万
  • 项目类别:
    Continuing Grant
Robust and Efficient Numerical Methods for Wave Equations in the Time Domain: Nonlinear and Multiscale Problems
时域波动方程的鲁棒高效数值方法:非线性和多尺度问题
  • 批准号:
    2309687
  • 财政年份:
    2023
  • 资助金额:
    $ 32万
  • 项目类别:
    Standard Grant
Collaborative Research: Breaking the 1D barrier in radiative transfer: Fast, low-memory numerical methods for enabling inverse problems and machine learning emulators
合作研究:打破辐射传输中的一维障碍:用于实现逆问题和机器学习模拟器的快速、低内存数值方法
  • 批准号:
    2324369
  • 财政年份:
    2023
  • 资助金额:
    $ 32万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了