Fast and accurate numerical algorithms for boundary value problems of elliptic partial differential equations on open surfaces in three dimensions
三维开曲面椭圆偏微分方程边值问题的快速准确数值算法
基本信息
- 批准号:0715121
- 负责人:
- 金额:$ 6.83万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2007
- 资助国家:美国
- 起止时间:2007-07-15 至 2009-06-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
The focus of the proposed work is directed toward the development of fast, accurate, and robust computational techniques for solving large-scale scattering problems when the scattering surfaces consist of a collection of open surfaces (i.e., surfaces with boundary). Though such problems are often initially formulated as boundary-value problems of elliptic partial differential equations, integral equations have been employed as one of principal tools for the numerical solution of scattering problems, particularly for exterior problems. Historically, most of the integral equations used have been of the first kind, since numerical instabilities associated with such equations have not been critically important for the relatively small-scale problems that could be handled at the time. The combination of improved hardware with the recent progress in the design of "fast" algorithms has changed the situation dramatically. Condition numbers of systems of linear algebraic equations resulting from the discretization of integral equations of potential theory have become critical, and the simplest way to limit such condition numbers is by starting with second-kind integral equations. Hence, there is increasing interest in reducing scattering problems to systems of second-kind integral equations on the boundaries of scatterers.The investigator proposed to apply tools from potential theory and singular integrals to construct second-kind integral-equation (SKIE) formulations for open-surface problems (especially for those whose governing PDEs are the Laplace or Helmholtz equations). After SKIE formulations have been obtained, the investigator plans to apply them to develop and implement efficient and accurate numerical algorithms for open-surface problems, using a combination of iterative solvers and the fast multipole method. Since the Laplace equation and the Helmholtz equation are ubiquitous in applied mathematics and many practical problems involve open surfaces, the proposed research will have broad impacts on many active research fields including acoustic and electromagnetic scattering problems, fluid mechanics, elasticity problems, and inverse-scattering problems. The proposed research is also expected to have long-term impacts on key technologies such as reflecting antennas and integrated circuits.
所提出的工作的重点是针对快速,准确和鲁棒的计算技术的发展,用于解决大规模散射问题时,散射表面由开放表面的集合(即,有边界的曲面)。 虽然这类问题最初通常被表述为椭圆型偏微分方程的边值问题,但积分方程已被用作数值求解散射问题,特别是外部问题的主要工具之一。 从历史上看,大多数使用的积分方程都是第一类,因为与这些方程相关的数值不稳定性对于当时可以处理的相对较小的问题并不重要。 改进的硬件与“快速”算法设计的最新进展相结合,极大地改变了这种情况。 从位势理论的积分方程的离散化得到的线性代数方程组的条件数已经变得至关重要,限制这种条件数的最简单方法是从第二类积分方程开始。 因此,有越来越多的兴趣,减少散射问题的第二类积分方程组的边界上scatersers.The研究人员提出的工具,从潜在的理论和奇异积分,以构建第二类积分方程(SKIE)配方的开放表面的问题(特别是对于那些控制的偏微分方程是拉普拉斯或亥姆霍兹方程)。 SKIE配方已获得后,研究人员计划将其应用于开发和实施有效和准确的数值算法的开放表面的问题,使用迭代求解器和快速多极子方法相结合。 由于拉普拉斯方程和Helmholtz方程在应用数学中是普遍存在的,并且许多实际问题涉及开放表面,因此所提出的研究将对许多活跃的研究领域产生广泛的影响,包括声学和电磁散射问题,流体力学,弹性问题和逆散射问题。预计拟议的研究还将对反射天线和集成电路等关键技术产生长期影响。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Shidong Jiang其他文献
Second kind integral equation formulation for the modified biharmonic equation and its applications
修正双调和方程的第二类积分方程公式及其应用
- DOI:
- 发表时间:
2013 - 期刊:
- 影响因子:4.1
- 作者:
Shidong Jiang;M. Kropinski;B. Quaife - 通讯作者:
B. Quaife
Finite‐Element Method Solution of Non‐Fickian Transport in Porous Media: The CTRW‐FEM Package
多孔介质中非菲克输运的有限元方法解决方案:CTRW-FEM 包
- DOI:
10.1111/gwat.12813 - 发表时间:
2018 - 期刊:
- 影响因子:2.6
- 作者:
Rami Ben‐Zvi;Shidong Jiang;H. Scher;B. Berkowitz - 通讯作者:
B. Berkowitz
The inhibition of ecdysone signal pathway was the key of pyriproxyfen poisoning for silkworm, emBombyx mori/em
蜕皮激素信号通路的抑制是保幼激素类似物烯虫酯对家蚕中毒的关键。
- DOI:
10.1016/j.pestbp.2022.105307 - 发表时间:
2023-01-01 - 期刊:
- 影响因子:4.000
- 作者:
Pingyang Wang;Qiuying Cui;Xia Wang;Yanwei Liu;Yuli Zhang;Xuhua Huang;Shidong Jiang;Mangui Jiang;Lihui Bi;Biao Li;Wei Wei;Zhixin Pan - 通讯作者:
Zhixin Pan
Computing the ground state and dynamics of thenonlinear Schrödinger equation with nonlocal interactions via the nonuniform FFT
通过非均匀 FFT 计算具有非局部相互作用的非线性薛定谔方程的基态和动力学
- DOI:
10.1016/j.jcp.2015.04.045 - 发表时间:
2015 - 期刊:
- 影响因子:4.1
- 作者:
Weizhu Bao;Shidong Jiang;Qinglin Tang;Yong Zhang - 通讯作者:
Yong Zhang
An Efficient High Order Method for Dislocation Climb in Two Dimensions
二维位错爬升的高效高阶方法
- DOI:
10.1137/16m1081920 - 发表时间:
2017 - 期刊:
- 影响因子:0
- 作者:
Shidong Jiang;M. Rachh;Y. Xiang - 通讯作者:
Y. Xiang
Shidong Jiang的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Shidong Jiang', 18)}}的其他基金
Collaborative Research: Efficient High-Order Algorithms for Nonequilibrium Microflows Over the Entire Range of Knudsen Number
协作研究:全努森数范围内非平衡微流的高效高阶算法
- 批准号:
1720405 - 财政年份:2017
- 资助金额:
$ 6.83万 - 项目类别:
Standard Grant
Collaborative Research: Efficient High-Order Parallel Algorithms for Large-Scale Photonics Simulation
协作研究:大规模光子学仿真的高效高阶并行算法
- 批准号:
1418918 - 财政年份:2014
- 资助金额:
$ 6.83万 - 项目类别:
Continuing Grant
AF: Medium: Collaborative Research: Integral-Equation-Based Fast Algorithms and Graph-Theoretic Methods for Large-Scale Simulations
AF:中:协作研究:用于大规模仿真的基于积分方程的快速算法和图论方法
- 批准号:
0905395 - 财政年份:2009
- 资助金额:
$ 6.83万 - 项目类别:
Standard Grant
相似国自然基金
非定常复杂流场的时空高精度高效率新格式的研究
- 批准号:50376004
- 批准年份:2003
- 资助金额:20.0 万元
- 项目类别:面上项目
相似海外基金
Big Data for Fast and Accurate Numerical Simulation of Mechanical Structures
大数据用于快速准确的机械结构数值模拟
- 批准号:
RGPIN-2017-05524 - 财政年份:2022
- 资助金额:
$ 6.83万 - 项目类别:
Discovery Grants Program - Individual
Big Data for Fast and Accurate Numerical Simulation of Mechanical Structures
大数据用于快速准确的机械结构数值模拟
- 批准号:
RGPIN-2017-05524 - 财政年份:2021
- 资助金额:
$ 6.83万 - 项目类别:
Discovery Grants Program - Individual
Big Data for Fast and Accurate Numerical Simulation of Mechanical Structures
大数据用于快速准确的机械结构数值模拟
- 批准号:
RGPIN-2017-05524 - 财政年份:2020
- 资助金额:
$ 6.83万 - 项目类别:
Discovery Grants Program - Individual
Big Data for Fast and Accurate Numerical Simulation of Mechanical Structures
大数据用于快速准确的机械结构数值模拟
- 批准号:
RGPIN-2017-05524 - 财政年份:2019
- 资助金额:
$ 6.83万 - 项目类别:
Discovery Grants Program - Individual
Big Data for Fast and Accurate Numerical Simulation of Mechanical Structures
大数据用于快速准确的机械结构数值模拟
- 批准号:
507909-2017 - 财政年份:2019
- 资助金额:
$ 6.83万 - 项目类别:
Discovery Grants Program - Accelerator Supplements
Big Data for Fast and Accurate Numerical Simulation of Mechanical Structures
大数据用于快速准确的机械结构数值模拟
- 批准号:
507909-2017 - 财政年份:2018
- 资助金额:
$ 6.83万 - 项目类别:
Discovery Grants Program - Accelerator Supplements
Big Data for Fast and Accurate Numerical Simulation of Mechanical Structures
大数据用于快速准确的机械结构数值模拟
- 批准号:
RGPIN-2017-05524 - 财政年份:2018
- 资助金额:
$ 6.83万 - 项目类别:
Discovery Grants Program - Individual
Big Data for Fast and Accurate Numerical Simulation of Mechanical Structures
大数据用于快速准确的机械结构数值模拟
- 批准号:
507909-2017 - 财政年份:2017
- 资助金额:
$ 6.83万 - 项目类别:
Discovery Grants Program - Accelerator Supplements
Big Data for Fast and Accurate Numerical Simulation of Mechanical Structures
大数据用于快速准确的机械结构数值模拟
- 批准号:
RGPIN-2017-05524 - 财政年份:2017
- 资助金额:
$ 6.83万 - 项目类别:
Discovery Grants Program - Individual
Development of an accurate and fast numerical method for electromagnetic wave scattering problems with a boundary element method
利用边界元法开发电磁波散射问题的精确快速数值方法
- 批准号:
26790078 - 财政年份:2014
- 资助金额:
$ 6.83万 - 项目类别:
Grant-in-Aid for Young Scientists (B)