Collaborative Research: Efficient High-Order Algorithms for Nonequilibrium Microflows Over the Entire Range of Knudsen Number

协作研究:全努森数范围内非平衡微流的高效高阶算法

基本信息

  • 批准号:
    1720405
  • 负责人:
  • 金额:
    $ 16.25万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2017
  • 资助国家:
    美国
  • 起止时间:
    2017-07-01 至 2021-06-30
  • 项目状态:
    已结题

项目摘要

Nonequilibrium microflows are ubiquitous in sensors, microfluidics, and microelectromechanical systems and have important applications in bio-medical and environmental sciences, aerodynamic, chemical, and energy industries, and space science. For example, vacuum pumps manipulate rarefied gases at very low density and pressure, where approaches based on continuum theory, which is the engineering model for gaseous flows at standard temperature and pressure, is no longer valid. The extent of nonequilibrium of a gaseous flow is qualitatively measured by the Knudsen number -- the ratio of mean free path to a macroscopic length. Nonequilibrium flows may be modeled by the Boltzmann equation for the single-particle velocity distribution function in phase space. Standard methods for numerical solution may not be accurate enough, and their computational cost may be prohibitively expensive due to the high-dimensionality of phase space, especially for time-dependent problems. This project aims to create effective and efficient simulation tools for nonequilibrium microflows. Graduate students are involved in the research.For low-speed microflows, reduced kinetic models, such as the linearized Bhatnagar-Gross-Krook-Welander (BGKW) equation, coupled with the diffuse reflection boundary condition, are reliable and capable of producing very accurate results for microflows in the whole range of the Knudsen number. The equation can be transformed into a system of linear integral equations for macroscopic variables including the density of the gas, the flow velocity, and the temperature, which leads to great dimension reduction, consequently drastic enhancement of computational efficiency. The overarching goal of this research project is to develop efficient high-order algorithms to solve a system of integral equations pertaining to nonequilibrium gaseous flows in various geometries over the entire range of Knudsen number, for applications to microflows. The work consists of the following technical ingredients to overcome the challenges encountered in simulation of microflows: (1) An accurate and efficient algorithm to evaluate the Abramowitz function on the complex plane, as required for time-dependent problems; (2) Theoretical analysis, especially on the nullspace, of the integral equations; (3) Efficient and high-order algorithms for the integral equations on smooth and nonsmooth convex domains in two dimensions. The results of the project are anticipated to provide enabling technologies for a broad range of engineering applications involving multiscale multi-physics microflows.
非平衡微流场普遍存在于传感器、微流体和微电子机械系统中,在生物医学和环境科学、空气动力学、化工和能源工业以及空间科学中有着重要的应用。例如,真空泵在非常低的密度和压力下操作稀薄气体,而基于连续介质理论的方法不再有效,连续介质理论是标准温度和压力下气体流动的工程模型。气体流动的不平衡程度由克努森数--平均自由程与宏观长度之比--来定性地测量。非平衡流可以用相空间中单粒子速度分布函数的Boltzmann方程来描述。标准的数值解方法可能不够精确,而且由于相空间的高维性,特别是对于时间相关的问题,它们的计算成本可能高得令人望而却步。该项目旨在为非平衡微流创造有效和高效的模拟工具。对于低速微流,简化的动力学模型,如线性化的Bhatnagar-Gross-Krook-Welander(BGKW)方程,结合漫反射边界条件,是可靠的,能够在整个克努森数范围内产生非常精确的微流结果。该方程可转化为包括气体密度、流速和温度在内的宏观变量的线性积分方程组,从而大大降低了维数,从而大大提高了计算效率。该研究项目的主要目标是开发有效的高阶算法来求解与整个Knudsen数范围内各种几何形状的非平衡气体流动有关的积分方程组,以应用于微流动。为了克服微流模拟中遇到的挑战,本文的工作包括以下几个方面:(1)精确和高效地计算复杂平面上的Abramowitz函数,如时间相关问题所需;(2)积分方程组的理论分析,特别是在零空间上;(3)二维光滑和非光滑凸域上积分方程组的高效和高阶算法。该项目的成果预计将为涉及多尺度、多物理微流的广泛工程应用提供使能技术。

项目成果

期刊论文数量(9)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
The Anisotropic Truncated Kernel Method for Convolution with Free-Space Green's Functions
  • DOI:
    10.1137/18m1184497
  • 发表时间:
    2018-11
  • 期刊:
  • 影响因子:
    0
  • 作者:
    L. Greengard;Shidong Jiang;Yong Zhang
  • 通讯作者:
    L. Greengard;Shidong Jiang;Yong Zhang
An Efficient Boundary Integral Scheme for the Threshold Dynamics Method II: Applications to Wetting Dynamics
  • DOI:
    10.1007/s10915-019-01067-1
  • 发表时间:
    2019-10
  • 期刊:
  • 影响因子:
    2.5
  • 作者:
    Dong Wang;Shidong Jiang;Xiaoping Wang
  • 通讯作者:
    Dong Wang;Shidong Jiang;Xiaoping Wang
Explicit unconditionally stable methods for the heat equation via potential theory
  • DOI:
    10.2140/paa.2019.1.709
  • 发表时间:
    2019-02
  • 期刊:
  • 影响因子:
    0
  • 作者:
    A. Barnett;C. Epstein;L. Greengard;Shidong Jiang;Jun Wang
  • 通讯作者:
    A. Barnett;C. Epstein;L. Greengard;Shidong Jiang;Jun Wang
On Integral Equation Methods for the First Dirichlet Problem of the Biharmonic and Modified Biharmonic Equations in NonSmooth Domains
  • DOI:
    10.1137/17m1162238
  • 发表时间:
    2018-08
  • 期刊:
  • 影响因子:
    0
  • 作者:
    J. Helsing;Shidong Jiang
  • 通讯作者:
    J. Helsing;Shidong Jiang
Fast High-Order Integral Equation Methods for Solving Boundary Value Problems of Two Dimensional Heat Equation in Complex Geometry
求解复杂几何二维热方程边值问题的快速高阶积分方程法
  • DOI:
    10.1007/s10915-018-0872-x
  • 发表时间:
    2019
  • 期刊:
  • 影响因子:
    2.5
  • 作者:
    Wang, Shaobo;Jiang, Shidong;Wang, Jing
  • 通讯作者:
    Wang, Jing
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Shidong Jiang其他文献

Second kind integral equation formulation for the modified biharmonic equation and its applications
修正双调和方程的第二类积分方程公式及其应用
Finite‐Element Method Solution of Non‐Fickian Transport in Porous Media: The CTRW‐FEM Package
多孔介质中非菲克输运的有限元方法解决方案:CTRW-FEM 包
  • DOI:
    10.1111/gwat.12813
  • 发表时间:
    2018
  • 期刊:
  • 影响因子:
    2.6
  • 作者:
    Rami Ben‐Zvi;Shidong Jiang;H. Scher;B. Berkowitz
  • 通讯作者:
    B. Berkowitz
The inhibition of ecdysone signal pathway was the key of pyriproxyfen poisoning for silkworm, emBombyx mori/em
蜕皮激素信号通路的抑制是保幼激素类似物烯虫酯对家蚕中毒的关键。
  • DOI:
    10.1016/j.pestbp.2022.105307
  • 发表时间:
    2023-01-01
  • 期刊:
  • 影响因子:
    4.000
  • 作者:
    Pingyang Wang;Qiuying Cui;Xia Wang;Yanwei Liu;Yuli Zhang;Xuhua Huang;Shidong Jiang;Mangui Jiang;Lihui Bi;Biao Li;Wei Wei;Zhixin Pan
  • 通讯作者:
    Zhixin Pan
An Efficient High Order Method for Dislocation Climb in Two Dimensions
二维位错爬升的高效高阶方法
  • DOI:
    10.1137/16m1081920
  • 发表时间:
    2017
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Shidong Jiang;M. Rachh;Y. Xiang
  • 通讯作者:
    Y. Xiang
Computing the ground state and dynamics of thenonlinear Schrödinger equation with nonlocal interactions via the nonuniform FFT
通过非均匀 FFT 计算具有非局部相互作用的非线性薛定谔方程的基态和动力学
  • DOI:
    10.1016/j.jcp.2015.04.045
  • 发表时间:
    2015
  • 期刊:
  • 影响因子:
    4.1
  • 作者:
    Weizhu Bao;Shidong Jiang;Qinglin Tang;Yong Zhang
  • 通讯作者:
    Yong Zhang

Shidong Jiang的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Shidong Jiang', 18)}}的其他基金

Collaborative Research: Efficient High-Order Parallel Algorithms for Large-Scale Photonics Simulation
协作研究:大规模光子学仿真的高效高阶并行算法
  • 批准号:
    1418918
  • 财政年份:
    2014
  • 资助金额:
    $ 16.25万
  • 项目类别:
    Continuing Grant
AF: Medium: Collaborative Research: Integral-Equation-Based Fast Algorithms and Graph-Theoretic Methods for Large-Scale Simulations
AF:中:协作研究:用于大规模仿真的基于积分方程的快速算法和图论方法
  • 批准号:
    0905395
  • 财政年份:
    2009
  • 资助金额:
    $ 16.25万
  • 项目类别:
    Standard Grant
Fast and accurate numerical algorithms for boundary value problems of elliptic partial differential equations on open surfaces in three dimensions
三维开曲面椭圆偏微分方程边值问题的快速准确数值算法
  • 批准号:
    0715121
  • 财政年份:
    2007
  • 资助金额:
    $ 16.25万
  • 项目类别:
    Standard Grant

相似国自然基金

Research on Quantum Field Theory without a Lagrangian Description
  • 批准号:
    24ZR1403900
  • 批准年份:
    2024
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目
Cell Research
  • 批准号:
    31224802
  • 批准年份:
    2012
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
Cell Research
  • 批准号:
    31024804
  • 批准年份:
    2010
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
Cell Research (细胞研究)
  • 批准号:
    30824808
  • 批准年份:
    2008
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
Research on the Rapid Growth Mechanism of KDP Crystal
  • 批准号:
    10774081
  • 批准年份:
    2007
  • 资助金额:
    45.0 万元
  • 项目类别:
    面上项目

相似海外基金

Collaborative Research: Beyond the Single-Atom Paradigm: A Priori Design of Dual-Atom Alloy Active Sites for Efficient and Selective Chemical Conversions
合作研究:超越单原子范式:双原子合金活性位点的先验设计,用于高效和选择性化学转化
  • 批准号:
    2334970
  • 财政年份:
    2024
  • 资助金额:
    $ 16.25万
  • 项目类别:
    Standard Grant
Collaborative Research: SHF: Small: Efficient and Scalable Privacy-Preserving Neural Network Inference based on Ciphertext-Ciphertext Fully Homomorphic Encryption
合作研究:SHF:小型:基于密文-密文全同态加密的高效、可扩展的隐私保护神经网络推理
  • 批准号:
    2412357
  • 财政年份:
    2024
  • 资助金额:
    $ 16.25万
  • 项目类别:
    Standard Grant
Collaborative Research: Reversible Computing and Reservoir Computing with Magnetic Skyrmions for Energy-Efficient Boolean Logic and Artificial Intelligence Hardware
合作研究:用于节能布尔逻辑和人工智能硬件的磁斯格明子可逆计算和储层计算
  • 批准号:
    2343606
  • 财政年份:
    2024
  • 资助金额:
    $ 16.25万
  • 项目类别:
    Standard Grant
Collaborative Research: Beyond the Single-Atom Paradigm: A Priori Design of Dual-Atom Alloy Active Sites for Efficient and Selective Chemical Conversions
合作研究:超越单原子范式:双原子合金活性位点的先验设计,用于高效和选择性化学转化
  • 批准号:
    2334969
  • 财政年份:
    2024
  • 资助金额:
    $ 16.25万
  • 项目类别:
    Standard Grant
Collaborative Research: Integrated Materials-Manufacturing-Controls Framework for Efficient and Resilient Manufacturing Systems
协作研究:高效、弹性制造系统的集成材料制造控制框架
  • 批准号:
    2346650
  • 财政年份:
    2024
  • 资助金额:
    $ 16.25万
  • 项目类别:
    Standard Grant
Collaborative Research: Integrated Materials-Manufacturing-Controls Framework for Efficient and Resilient Manufacturing Systems
协作研究:高效、弹性制造系统的集成材料制造控制框架
  • 批准号:
    2346651
  • 财政年份:
    2024
  • 资助金额:
    $ 16.25万
  • 项目类别:
    Standard Grant
Collaborative Research: FET: Medium:Compact and Energy-Efficient Compute-in-Memory Accelerator for Deep Learning Leveraging Ferroelectric Vertical NAND Memory
合作研究:FET:中型:紧凑且节能的内存计算加速器,用于利用铁电垂直 NAND 内存进行深度学习
  • 批准号:
    2312886
  • 财政年份:
    2023
  • 资助金额:
    $ 16.25万
  • 项目类别:
    Standard Grant
Collaborative Research: FET: Medium:Compact and Energy-Efficient Compute-in-Memory Accelerator for Deep Learning Leveraging Ferroelectric Vertical NAND Memory
合作研究:FET:中型:紧凑且节能的内存计算加速器,用于利用铁电垂直 NAND 内存进行深度学习
  • 批准号:
    2312884
  • 财政年份:
    2023
  • 资助金额:
    $ 16.25万
  • 项目类别:
    Standard Grant
Collaborative Research: FET: Medium: Efficient Compilation for Dynamically Reconfigurable Atom Arrays
合作研究:FET:中:动态可重构原子阵列的高效编译
  • 批准号:
    2313084
  • 财政年份:
    2023
  • 资助金额:
    $ 16.25万
  • 项目类别:
    Standard Grant
Collaborative Research: Accurate and Structure-Preserving Numerical Schemes for Variable Temperature Phase Field Models and Efficient Solvers
合作研究:用于变温相场模型和高效求解器的精确且结构保持的数值方案
  • 批准号:
    2309547
  • 财政年份:
    2023
  • 资助金额:
    $ 16.25万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了