SGER: Microfabrication Approaches for Microscale Permanent Magnets
SGER:微型永磁体的微加工方法
基本信息
- 批准号:0716139
- 负责人:
- 金额:--
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2007
- 资助国家:美国
- 起止时间:2007-05-01 至 2008-10-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
The long-term technical goal of this proposal is to enable high-performance, fully-integrated, micromagnetic transducers for microscale sensors, actuators, and power converters. Magnetic and electrodynamic transducers can offer significant performance advantages (efficiency, reliability) over other electromechanical transduction approaches, especially for applications that demand high stroke and/or high power density. Currently however, certain design and fabrication issues prevent the practical implementation of microscale transducers that rely on permanent magnets. Most previously demonstrated micromagnetic devices use a hybrid fabrication approach, where conventionally-manufactured, mm-scale magnets are assembled into a micromachined structure. This approach constrains the device design, limits the minimum device size, and eliminates the benefits of wafer-scale microfabrication. These fabrication-related effects combine to hamper the performance and appeal of micromagnetic transducers.This exploratory proposal focuses on microfabrication process development efforts to overcome these fabrication and integration challenges. The immediate goal is to advance the state-of-the-art in microfabrication to permit the integration of high-performance permanent magnet materials within more complex micromachined structures. Efforts will focus on systematic and practical experiments to develop robust microfabrication procedures for deposition, process integration, and patterned-magnetization of high-performance permanent magnet films (electroplated magnetic alloy films and composite polymer/magnetic particle films) in silicon-based microstructures. Solving these fabrication-related issues is a necessary and critical step for the long-term development of fully-integrated, fully-microfabricated micromagnetic sensors and actuators.Intellectual Merit. This research will develop new microfabrication and micro-magnetization methods for permanent magnet thick-films. Development of robust integration methods for high-performance permanent magnet films will trigger an explosion of renewed interest in microscale magnetic transducers. With favorable physical scaling laws and decades of proven performance, miniaturized magnetic devices have only been limited by practical microfabrication challenges, specifically with permanent magnet films. This research will result in a roadmap for integration of permanent magnet films for MEMS. This will form the foundation and springboard for the PI's long-term development of magnetic microsystems such as microscale speakers, valves, pumps, motors, energy harvesters, etc.Broader Impact. The research program will provide an educational opportunity to train graduate and undergraduate engineers with practical engineering design and development principles. The PI plans to maximize the participation of underrepresented groups by leveraging his ongoing relationships with established programs at UF such as the University Scholars program and the NSF-sponsored South East Alliance for Graduate Education and the Professoriate (SEAGEP) program. Technical results will be disseminated through conference presentations, archival publications, and workshops. With these results, collaborations will be sought with US and European industrial partners to develop and commercialize new micromagnetic products for biomedical, aerospace, and consumer electronic applications.
这项提议的长期技术目标是实现用于微型传感器、执行器和功率转换器的高性能、完全集成的微磁传感器。与其他机电换能器相比,磁力和电动换能器可以提供显著的性能优势(效率、可靠性),特别是对于需要高行程和/或高功率密度的应用。然而,目前,某些设计和制造问题阻碍了依赖永磁体的微型换能器的实际实施。大多数以前展示的微磁设备使用混合制造方法,其中传统制造的毫米级磁体被组装成微机械结构。这种方法限制了器件设计,限制了最小器件尺寸,并消除了晶片规模微制造的好处。这些与制造相关的效应共同阻碍了微磁换能器的性能和吸引力。这项探索性建议集中在微制造工艺开发方面,以克服这些制造和集成方面的挑战。近期的目标是推进最先进的微制造技术,使高性能永磁体材料能够集成到更复杂的微机械结构中。我们将致力于系统和实际的实验,为硅基微结构中的高性能永磁薄膜(电镀磁性合金薄膜和聚合物/磁性颗粒复合薄膜)的沉积、工艺集成和图案化磁化开发强有力的微制造程序。解决这些与制造相关的问题是全集成、全微制造微磁传感器和执行器长期发展的必要和关键步骤。这项研究将为永磁体厚膜开发新的微细加工和微磁化方法。高性能永磁膜的稳健集成方法的发展将引发人们对微尺度磁性换能器的新的兴趣。凭借良好的物理比例定律和几十年的成熟性能,小型化磁性设备仅受到实际微制造挑战的限制,特别是永磁膜。这项研究将为MEMS永磁膜的集成提供一个路线图。这将为PI的磁性微系统的长期发展奠定基础和跳板,例如微型扬声器、阀门、泵、电机、能量收集器等。该研究计划将提供一个教育机会,培养具有实用工程设计和开发原则的研究生和本科生工程师。PI计划通过利用他与密歇根大学现有项目的持续关系,最大限度地提高未被充分代表的群体的参与,这些项目包括大学学者计划和NSF赞助的东南研究生教育联盟和教授计划(SEAGEP)。技术成果将通过会议报告、档案出版物和讲习班传播。有了这些成果,将寻求与美国和欧洲的工业合作伙伴合作,开发用于生物医学、航空航天和消费电子应用的新型微磁产品并将其商业化。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
David Arnold其他文献
Embedded Mobile ROS Platform for SLAM Application with RGB-D Cameras
用于带有 RGB-D 相机的 SLAM 应用的嵌入式移动 ROS 平台
- DOI:
10.1109/eit48999.2020.9208310 - 发表时间:
2020 - 期刊:
- 影响因子:0
- 作者:
A. Newman;Guojun Yang;Boyang Wang;David Arnold;J. Saniie - 通讯作者:
J. Saniie
A Model for Optimal Human Navigation with Stochastic Effects
具有随机效应的最佳人类导航模型
- DOI:
10.1137/19m1296537 - 发表时间:
2020 - 期刊:
- 影响因子:0
- 作者:
C. Parkinson;David Arnold;A. Bertozzi;S. Osher - 通讯作者:
S. Osher
Mergers and Acquisitions, Local Labor Market Concentration, and Worker Outcomes
- DOI:
10.2139/ssrn.3476369 - 发表时间:
2019-10 - 期刊:
- 影响因子:0
- 作者:
David Arnold - 通讯作者:
David Arnold
Bad research is not all bad
- DOI:
10.1186/s13063-023-07706-1 - 发表时间:
2023-10-20 - 期刊:
- 影响因子:2.000
- 作者:
Fergus Hamilton;David Arnold;Richard Lilford - 通讯作者:
Richard Lilford
Predicting population health focused outcomes using machine learning
使用机器学习预测人口健康重点结果
- DOI:
- 发表时间:
2019 - 期刊:
- 影响因子:0
- 作者:
David Arnold - 通讯作者:
David Arnold
David Arnold的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('David Arnold', 18)}}的其他基金
Collaborative Research: Single-Input Control of Large Microrobot Swarms using Serial Addressing for Microassembly and Biomedical Applications
协作研究:使用串行寻址对大型微型机器人群进行单输入控制,用于微装配和生物医学应用
- 批准号:
1762700 - 财政年份:2018
- 资助金额:
-- - 项目类别:
Standard Grant
EAGER: Processes for Manufacturing High-Performance Magnetic Materials in Electronic Systems
EAGER:电子系统中高性能磁性材料的制造工艺
- 批准号:
1451993 - 财政年份:2014
- 资助金额:
-- - 项目类别:
Standard Grant
Collaborative Research: Tailoring Energy Flow in Magnetic Oscillator Arrays
合作研究:定制磁振荡器阵列中的能量流
- 批准号:
1300658 - 财政年份:2013
- 资助金额:
-- - 项目类别:
Standard Grant
Warm Season Land Surface--Climate Interactions in the U.S. Midwest
暖季陆地表面——美国中西部的气候相互作用
- 批准号:
9876823 - 财政年份:1999
- 资助金额:
-- - 项目类别:
Standard Grant
Graphical and Qualitative Investigations In Multivariable Calculus, Linear Algebra, and Differential Equations
多元微积分、线性代数和微分方程的图形和定性研究
- 批准号:
9651374 - 财政年份:1996
- 资助金额:
-- - 项目类别:
Standard Grant
Mathematical Sciences: Invariants and Endomorphisms of Groups and Modules
数学科学:群和模的不变量和自同态
- 批准号:
9101000 - 财政年份:1991
- 资助金额:
-- - 项目类别:
Continuing grant
Mathematical Sciences: Invariants for Abelian Groups
数学科学:阿贝尔群的不变量
- 批准号:
8802062 - 财政年份:1988
- 资助金额:
-- - 项目类别:
Continuing Grant
Development of Regional Mechanisms For Coordination of Scientific and Technical Resources
发展区域科技资源协调机制
- 批准号:
8018909 - 财政年份:1980
- 资助金额:
-- - 项目类别:
Standard Grant
相似海外基金
Navigate homogenesis nephrogenesis in kidney organoid by microfabrication of 3D extracellular matrix.
通过 3D 细胞外基质的微加工来引导肾脏类器官中的同质肾发生。
- 批准号:
24K21098 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Grant-in-Aid for Early-Career Scientists
CAREER: Harnessing Microfabrication for Chemical Control During High Pressure Synthesis of Non-Equilibrium Carbides
职业:在非平衡碳化物高压合成过程中利用微加工进行化学控制
- 批准号:
2237478 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Continuing Grant
CAREER: Charge-Programmed Additive Microfabrication Process for Multi-Materials and Multi-Functionalities
职业:多材料和多功能的电荷编程增材微加工工艺
- 批准号:
2309828 - 财政年份:2022
- 资助金额:
-- - 项目类别:
Standard Grant
Microfabrication of Technologies to Examine the Correlation between the Microbiome and Cancer
研究微生物组与癌症之间相关性的微加工技术
- 批准号:
575714-2022 - 财政年份:2022
- 资助金额:
-- - 项目类别:
Alexander Graham Bell Canada Graduate Scholarships - Master's
Development of novel quantum vacuum-based electronic devices platform and enabling its microfabrication methods.
开发新型基于量子真空的电子器件平台并实现其微加工方法。
- 批准号:
559532-2020 - 财政年份:2022
- 资助金额:
-- - 项目类别:
Alliance Grants
Microfabrication technologies for soft and bio materials and their applications
软质生物材料微细加工技术及其应用
- 批准号:
RGPIN-2022-05343 - 财政年份:2022
- 资助金额:
-- - 项目类别:
Discovery Grants Program - Individual
International Network for Microfabrication of Atomic Quantum Sensors
国际原子量子传感器微加工网络
- 批准号:
EP/W026929/1 - 财政年份:2022
- 资助金额:
-- - 项目类别:
Research Grant
Technologies de microfabrication industrielle
微细加工工业技术
- 批准号:
CCB21-2021-00135 - 财政年份:2022
- 资助金额:
-- - 项目类别:
Applied Research and Technology Partnership Grants
Advanced Microsystems through alternative microfabrication processes
通过替代微加工工艺实现先进微系统
- 批准号:
RGPIN-2017-06567 - 财政年份:2021
- 资助金额:
-- - 项目类别:
Discovery Grants Program - Individual
Development of novel quantum vacuum-based electronic devices platform and enabling its microfabrication methods.
开发新型基于量子真空的电子器件平台并实现其微加工方法。
- 批准号:
559532-2020 - 财政年份:2021
- 资助金额:
-- - 项目类别:
Alliance Grants