In vivo Technology for Fast Optical Control of Neural Circuits
用于神经回路快速光学控制的体内技术
基本信息
- 批准号:0724593
- 负责人:
- 金额:$ 45万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2007
- 资助国家:美国
- 起止时间:2007-08-01 至 2009-09-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Understanding how brain cells give rise to complex processes like action, thought, and emotion is limited by the current availability of tools to control specific cells within neural tissue. Fast, genetically targeted control over brain cells would allow elucidation of the role of specific neuronal types, and greatly advance our understanding of brain function. To enable precise perturbation of living circuits, the light-activated ion channel, called channelrhodopsin-2 (ChR2), will be used for genetically targeted, millisecond-timescale optical excitation of neurons. Another protein, called NpHR, has been identified for temporally-precise optical inhibition of neural activity. Both proteins function in mammalian neurons, together forming a complete, complementary system for multimodal, high-speed, genetically-targeted, all-optical investigation of living neural circuits. This project encompasses a broad technology development, testing, and dissemination plan that will yield generalizable, powerful tools for the physiology, neuroscience and biomedical engineering communities. Specifically, high-speed optical imaging reagents and technology for simultaneous imaging and optical stimulation/inhibition will be developed, in living animals. This is a fundamentally novel approach that could revolutionize the way circuits are probed in intact neural systems. These tools have an enormous range of applications, and the outcome of this work may be versatile enough to allow investigators to determine the contribution of a cell type of choice and relate it to circuit dynamics and behavior in virtually any brain region of interest. These new technologies also afford unique training opportunities for students, who will move on to other institutions and pass on expertise, leading over years to generation of a widespread cadre of scientists and engineers with intensive training in this powerful technology.
了解脑细胞如何产生复杂的过程,如行动,思想和情感,受到目前控制神经组织内特定细胞的工具的限制。对脑细胞进行快速的基因靶向控制将有助于阐明特定神经元类型的作用,并极大地促进我们对脑功能的理解。为了能够精确地扰动活体电路,被称为通道视紫红质-2(ChR 2)的光激活离子通道将用于神经元的遗传靶向、毫秒时间尺度的光激发。 另一种称为NpHR的蛋白质已被鉴定用于神经活动的时间精确光学抑制。这两种蛋白质在哺乳动物神经元中发挥作用,共同形成了一个完整的互补系统,用于对活神经回路进行多模式、高速、遗传靶向的全光学研究。该项目包括广泛的技术开发,测试和传播计划,将为生理学,神经科学和生物医学工程社区提供可推广的强大工具。具体而言,将在活体动物中开发用于同时成像和光学刺激/抑制的高速光学成像试剂和技术。这是一种全新的方法,可以彻底改变在完整神经系统中探测电路的方式。这些工具具有广泛的应用范围,这项工作的结果可能是多功能的,足以让研究人员确定选择的细胞类型的贡献,并将其与几乎任何感兴趣的大脑区域的电路动力学和行为联系起来。这些新技术还为学生提供了独特的培训机会,他们将进入其他机构并传授专业知识,多年来将产生广泛的科学家和工程师骨干,并在这项强大的技术方面进行密集培训。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Karl Deisseroth其他文献
Structural and computational analyses of channelrhodopsin, a light-gat ed cation channel (Poster 001)
视紫红质通道(一种光门控阳离子通道)的结构和计算分析(海报 001)
- DOI:
- 发表时间:
2013 - 期刊:
- 影响因子:0
- 作者:
Hideaki E. Kato;Mizuki Takemoto;Michio Koyama;Jumpei Ito;Shigehiko Hayashi;Andres D. Maturana;Karl Deisseroth;Ryuichiro Ishitani and Osamu Nureki - 通讯作者:
Ryuichiro Ishitani and Osamu Nureki
MIT Open Access Articles The Microbial Opsin Family of Optogenetic Tools
麻省理工学院开放获取文章光遗传学工具的微生物视蛋白家族
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
Feng Zhang;J. Vierock;O. Yizhar;L. Fenno;Satoshi Tsunoda;A. Kianianmomeni;Matthias Prigge;Andre Berndt;John Cushman;Ju¨rgen Polle;Jon Magnuson;Peter Hegemann;Karl Deisseroth - 通讯作者:
Karl Deisseroth
Cognitive neuroscience: In search of lost time
认知神经科学:寻找失去的时间
- DOI:
- 发表时间:
2017 - 期刊:
- 影响因子:64.8
- 作者:
Noah P. Young;Karl Deisseroth - 通讯作者:
Karl Deisseroth
A brain-wide map of descending inputs onto spinal V1 interneurons
大脑中向下投射到脊髓 V1 中间神经元的输入的全脑图谱
- DOI:
10.1016/j.neuron.2024.11.019 - 发表时间:
2025-02-19 - 期刊:
- 影响因子:15.000
- 作者:
Phillip D. Chapman;Anand S. Kulkarni;Alexandra J. Trevisan;Katie Han;Jennifer M. Hinton;Paulina Deltuvaite;Lief E. Fenno;Charu Ramakrishnan;Mary H. Patton;Lindsay A. Schwarz;Stanislav S. Zakharenko;Karl Deisseroth;Jay B. Bikoff - 通讯作者:
Jay B. Bikoff
Experience-independent transformation of single-cell 3D genome structure and transcriptome during postnatal development of the mammalian brain
哺乳动物大脑出生后发育过程中单细胞 3D 基因组结构和转录组的独立于经验的转化
- DOI:
10.1101/2020.04.02.022657 - 发表时间:
2020 - 期刊:
- 影响因子:0
- 作者:
Longzhi Tan;Longzhi Tan;Wenping Ma;Honggui Wu;Yinghui Zheng;D. Xing;Ritchie Chen;Xiang Li;Nicholas Daley;Karl Deisseroth;Karl Deisseroth;X. Xie - 通讯作者:
X. Xie
Karl Deisseroth的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Karl Deisseroth', 18)}}的其他基金
NeuroNex Technology Hub: Integrated Circuit Cracking (ICC) with Linked Tools for Diverse Systems
NeuroNex 技术中心:集成电路破解 (ICC) 以及适用于不同系统的链接工具
- 批准号:
1707261 - 财政年份:2017
- 资助金额:
$ 45万 - 项目类别:
Cooperative Agreement
INSPIRE: Fully-assembled Biology via Light-field Illumination and Intact-tissue Imaging
INSPIRE:通过光场照明和完整组织成像的完全组装生物学
- 批准号:
1247950 - 财政年份:2012
- 资助金额:
$ 45万 - 项目类别:
Standard Grant
相似国自然基金
Intelligent Patent Analysis for Optimized Technology Stack Selection:Blockchain BusinessRegistry Case Demonstration
- 批准号:
- 批准年份:2024
- 资助金额:万元
- 项目类别:外国学者研究基金项目
Journal of Computer Science and Technology
- 批准号:61224001
- 批准年份:2012
- 资助金额:20.0 万元
- 项目类别:专项基金项目
Journal of Materials Science & Technology
- 批准号:51024801
- 批准年份:2010
- 资助金额:24.0 万元
- 项目类别:专项基金项目
Journal of Computer Science and Technology
- 批准号:61040017
- 批准年份:2010
- 资助金额:4.0 万元
- 项目类别:专项基金项目
相似海外基金
Development of Biologically Utilizable CO2 Fixation Technology through Enhancement of Physiological Function of Fast-growing Paulownia
增强速生泡桐生理功能开发生物利用CO2固定技术
- 批准号:
23K11480 - 财政年份:2023
- 资助金额:
$ 45万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Imperagen, developing a breakthrough technology needed to bring ultra-fast enzyme engineering to market
Imperagen,开发将超快速酶工程推向市场所需的突破性技术
- 批准号:
10065705 - 财政年份:2023
- 资助金额:
$ 45万 - 项目类别:
Collaborative R&D
CC* Data Storage: Flexible Affordable Scalable Technology for Research Storage (FAST-Research Storage)
CC* 数据存储:用于研究存储的灵活且经济实惠的可扩展技术(FAST-Research Storage)
- 批准号:
2232810 - 财政年份:2022
- 资助金额:
$ 45万 - 项目类别:
Standard Grant
Establishment of a fast and efficient production method for pollen-free sugi seedlings by liquid culture technology
液体培养技术建立快速高效无花粉杉苗生产方法
- 批准号:
21H02244 - 财政年份:2021
- 资助金额:
$ 45万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Liquid metal-cooled fast reactor instrumentation technology development - CFD model development and validation
液态金属冷却快堆仪表技术开发-CFD模型开发和验证
- 批准号:
EP/T002395/1 - 财政年份:2020
- 资助金额:
$ 45万 - 项目类别:
Research Grant
Development of versatile liquid metal testing facility for lead-cooled fast reactor technology
开发用于铅冷快堆技术的多功能液态金属测试设施
- 批准号:
EP/T003359/1 - 财政年份:2020
- 资助金额:
$ 45万 - 项目类别:
Research Grant
Cold Spray Technology for Fast SARS-CoV-2 Disinfection on Public Surfaces: A Major Disruption in the COVID-19 Transmission Chain
用于公共表面快速 SARS-CoV-2 消毒的冷喷雾技术:COVID-19 传播链的重大破坏
- 批准号:
555084-2020 - 财政年份:2020
- 资助金额:
$ 45万 - 项目类别:
Alliance Grants
SBIR Phase I: Fast and scalable printing of high-resolution microfluidic devices using HLP technology.
SBIR 第一阶段:使用 HLP 技术快速、可扩展地打印高分辨率微流体装置。
- 批准号:
2013942 - 财政年份:2020
- 资助金额:
$ 45万 - 项目类别:
Standard Grant
Targeted Infusion Project: Females Advancing Science & Technology (FAST)
定向输注项目:女性推进科学
- 批准号:
2011284 - 财政年份:2020
- 资助金额:
$ 45万 - 项目类别:
Standard Grant
Fast-Track Design of a Novel Clinical Waste Destruction Technology
新型医疗废物销毁技术的快速设计
- 批准号:
91468 - 财政年份:2020
- 资助金额:
$ 45万 - 项目类别:
Collaborative R&D