Exploiting Prior Knowledge in Compressed Sensing
利用压缩感知的先验知识
基本信息
- 批准号:0725422
- 负责人:
- 金额:$ 30万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2007
- 资助国家:美国
- 起止时间:2007-09-01 至 2012-08-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Intellectual Merit: The field of compressive sensing (CS) promises to revolutionize digital processing broadly. The key idea is the use of nonadaptive linear projections to acquire an efficient, dimensionally reduced representation of a signal or image directly using just a few measurements. However, there are two limitations in current practical CS algorithms that constrain their application in practical scenarios. First, most of the work in CS deals with deterministic signals and does not assume any prior knowledge about them. In many applications, however, additional a priori information on the underlying signals is available, in addition to their sparsity. The a priori information may come either deterministically or statistically, e.g., through second order statistics. Our preliminary results show that exploiting it leads to a substantial performance improvement. The second constraint in standard CS is the need to perform reconstruction in a basis where the signal of interest admits a sparse representation, which reduces flexibility in practical applications. This research addresses these limitations by exploring how a priori information can be used in the general framework of CS to achieve improved performance, even when reconstruction is performed in a basis where the signal of interest does not admit a sparse representation. Furthermore, as a proof of concept, we will build a hardware demonstration system to show the feasibility of the proposed techniques in practical CS and with real-world signals.Broader Impact: Advances in compressive sensing may have a profound impact broadly, including applications in spectroscopy, imaging, communications, as well as consumer electronics. This project will include an integrated educational program involving two Ph.D. students and three undergraduate students, who will be introduced into this new field.
智力优势:压缩传感(CS)领域有望广泛地革新数字处理。 其关键思想是使用非自适应线性投影来获得一个有效的,减少了尺寸的信号或图像直接使用几个测量表示。 然而,在目前的实际CS算法,有两个限制,限制其在实际场景中的应用。 首先,CS中的大部分工作都处理确定性信号,并且不假设任何关于它们的先验知识。 然而,在许多应用中,除了其稀疏性之外,还可以获得关于潜在信号的附加先验信息。 先验信息可以确定性地或统计性地出现,例如,二阶统计。 我们的初步结果表明,利用它导致了显着的性能改善。 标准CS中的第二个约束是需要在感兴趣的信号允许稀疏表示的基础上执行重建,这降低了实际应用中的灵活性。 本研究通过探索如何在CS的一般框架中使用先验信息来解决这些限制,以实现更好的性能,即使在感兴趣的信号不允许稀疏表示的基础上进行重建。 此外,作为概念验证,我们将构建一个硬件演示系统,以展示所提出的技术在实际CS和真实信号中的可行性。更广泛的影响:压缩传感的进步可能会产生广泛的深远影响,包括光谱学,成像,通信以及消费电子产品的应用。 该项目将包括一个综合教育计划,涉及两个博士学位。学生和三名本科生,谁将被引入到这个新的领域。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Javier Garcia-Frias其他文献
Information theoretical aspects in coherent optical lithography systems
相干光刻系统中的信息理论方面
- DOI:
10.1364/oe.25.029043 - 发表时间:
2017-11 - 期刊:
- 影响因子:3.8
- 作者:
Xu Ma;Hao Zhang;Zhiqiang Wang;Yanqiu Li;Gonzalo R. Arce;Javier Garcia-Frias;Lu Zhang - 通讯作者:
Lu Zhang
An informational lithography approach based on source and mask optimization
基于源和掩模优化的信息光刻方法
- DOI:
- 发表时间:
- 期刊:
- 影响因子:5.4
- 作者:
Xu Ma;Yihua Pan;Shengen Zhang;Javier Garcia-Frias;Gonzalo R. Arce - 通讯作者:
Gonzalo R. Arce
Effect of the Shaping Filter in the Performance of Symbol-Sampled Receivers Over Unknown Continuous-Time Channels
- DOI:
10.1007/s11277-006-9215-6 - 发表时间:
2006-11-22 - 期刊:
- 影响因子:2.200
- 作者:
Richard Demo Souza;Javier Garcia-Frias - 通讯作者:
Javier Garcia-Frias
Javier Garcia-Frias的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Javier Garcia-Frias', 18)}}的其他基金
Collaborative Research: CIF: Small: Beyond Compressed Sensing: Analog Coding for Communications
合作研究:CIF:小型:超越压缩感知:通信模拟编码
- 批准号:
2007754 - 财政年份:2020
- 资助金额:
$ 30万 - 项目类别:
Standard Grant
FET: CIF: Small: Graph-Based Quantum Error Correcting Codes
FET:CIF:小型:基于图形的量子纠错码
- 批准号:
2007689 - 财政年份:2020
- 资助金额:
$ 30万 - 项目类别:
Standard Grant
CIF: Small: Hybrid analog-digital schemes for joint source-channel coding of digital sources
CIF:小型:数字源联合源通道编码的混合模拟数字方案
- 批准号:
1618653 - 财政年份:2016
- 资助金额:
$ 30万 - 项目类别:
Standard Grant
CIF: Small: Non-Linear Processing and Coding for Compressive Sensing with Applications in Imaging
CIF:小型:用于压缩传感的非线性处理和编码及其在成像中的应用
- 批准号:
0915800 - 财政年份:2009
- 资助金额:
$ 30万 - 项目类别:
Standard Grant
Turbo Like Codes for Distributed Source and Joint Source-Channel Coding of Correlated Sources
用于分布式源的 Turbo Like 码和相关源的联合源信道编码
- 批准号:
0311014 - 财政年份:2003
- 资助金额:
$ 30万 - 项目类别:
Continuing Grant
CAREER: Iterative Decoding Schemes For Channels With Memory: Application To Fading Channels
职业:具有记忆的信道的迭代解码方案:在衰落信道中的应用
- 批准号:
0093215 - 财政年份:2001
- 资助金额:
$ 30万 - 项目类别:
Continuing Grant
相似海外基金
The impact of prior knowledge on hippocampal-neocortical interactions during memory consolidation
记忆巩固过程中先验知识对海马-新皮质相互作用的影响
- 批准号:
479512 - 财政年份:2023
- 资助金额:
$ 30万 - 项目类别:
Operating Grants
Development of Deep Machine Learning Method for Generalized State Space Models Using Prior Knowledge Constraints and Weak Learning
使用先验知识约束和弱学习的广义状态空间模型深度机器学习方法的开发
- 批准号:
23H00471 - 财政年份:2023
- 资助金额:
$ 30万 - 项目类别:
Grant-in-Aid for Scientific Research (A)
Image Segmentation Based on Deep Learning and Prior Knowledge
基于深度学习和先验知识的图像分割
- 批准号:
23K16907 - 财政年份:2023
- 资助金额:
$ 30万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Development of advanced machine learning methods in cooperation with prior knowledge as simulators
与模拟器等先验知识合作开发先进的机器学习方法
- 批准号:
20K19869 - 财政年份:2022
- 资助金额:
$ 30万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
The role of prior knowledge and event segmentation in age- and Alzheimer's-related changes in event memory
先验知识和事件分割在年龄和阿尔茨海默病相关事件记忆变化中的作用
- 批准号:
10529012 - 财政年份:2022
- 资助金额:
$ 30万 - 项目类别:
The influence of prior knowledge on memory consolidation: A lesion-based approach
先验知识对记忆巩固的影响:基于损伤的方法
- 批准号:
559881-2021 - 财政年份:2022
- 资助金额:
$ 30万 - 项目类别:
Alexander Graham Bell Canada Graduate Scholarships - Doctoral
Leveraging prior knowledge to classify Indeterminate Lung Nodules in CT images using Deep Neural Networks
利用深度神经网络利用先验知识对 CT 图像中的不确定肺结节进行分类
- 批准号:
10389388 - 财政年份:2022
- 资助金额:
$ 30万 - 项目类别:
The role of prior knowledge and event segmentation in age- and Alzheimer's-related changes in event memory
先验知识和事件分割在年龄和阿尔茨海默病相关事件记忆变化中的作用
- 批准号:
10698135 - 财政年份:2022
- 资助金额:
$ 30万 - 项目类别:
The influence of prior knowledge on memory consolidation: A lesion-based approach
先验知识对记忆巩固的影响:基于损伤的方法
- 批准号:
559881-2021 - 财政年份:2021
- 资助金额:
$ 30万 - 项目类别:
Alexander Graham Bell Canada Graduate Scholarships - Doctoral
Advancing the Cognitive Science of Instruction: Testing the Role of Pedagogical Sequences, Scaffolding, and Prior Knowledge
推进教学认知科学:测试教学序列、脚手架和先验知识的作用
- 批准号:
2055117 - 财政年份:2021
- 资助金额:
$ 30万 - 项目类别:
Standard Grant