An Electrochemomechanical Theory and Its Application to Solid Oxide Fuel Cells

电化学机械理论及其在固体氧化物燃料电池中的应用

基本信息

  • 批准号:
    0726286
  • 负责人:
  • 金额:
    $ 33.49万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2007
  • 资助国家:
    美国
  • 起止时间:
    2007-08-15 至 2009-07-31
  • 项目状态:
    已结题

项目摘要

The ultimate goal of this project is to understand how ionic solids respond to the combined electrical, electrochemical and mechanical loadings. To achieve this, the research is organized into four components: (1) to develop and validate a scientific theory that account for the interaction between electrochemical reactions and mechanical stresses in ionic solids, (2) to develop a numerical method for solving the nonlinear equations in the new theory, (3) to gain better understanding of the coupling between electrochemistry and thermomechanical stresses in ionic solids near microscopic defects such as voids and crack, and (4) to conduct experimental validation of the new theory.Ionic solids such as yttria-stabilized zirconia and gadolinium-doped ceria are commonly used to make electrolyte - a key component in solid oxide fuel cells. Solid oxide fuel cell is an electrochemical device that converts hydrogen into electricity without releasing harmful pollution. It is considered as one of the most promising green energy conversion technologies of the future. However, to make solid oxide fuel cell commercially variable, fracture failure of the electrolyte under combined mechanical and electrochemical loadings must be fully understood. This research is to meet such need. Besides contributing to science and engineering, the research activities will also have a broader impact on educating students. Key aspects of the educational plan include integrating research results into existing courses, involving undergraduates in engineering research, bridging graduate research across different disciplines, and engaging students from underrepresented groups in engineering research.
这个项目的最终目标是了解离子固体如何响应组合的电,电化学和机械负荷。 为了实现这一目标,研究分为四个部分:(1)发展和验证一种解释离子固体中电化学反应和机械应力之间相互作用的科学理论,(2)发展一种求解新理论中非线性方程的数值方法,(3)为了更好地理解离子固体中诸如空隙和裂纹等微观缺陷附近的电化学和热机械应力之间的耦合,离子固体如氧化钇稳定的氧化锆和掺钆的二氧化铈通常用于制备电解质-固体氧化物燃料电池的关键组分。 固体氧化物燃料电池是一种将氢转化为电而不释放有害污染物的电化学装置。 它被认为是未来最有前途的绿色能源转换技术之一。 然而,为了使固体氧化物燃料电池在商业上可变,必须充分理解在组合的机械和电化学负载下电解质的断裂失效。本研究正是为了满足这一需求。 除了对科学和工程做出贡献外,研究活动还将对教育学生产生更广泛的影响。教育计划的关键方面包括将研究成果整合到现有课程中,让本科生参与工程研究,在不同学科的研究生研究中架起桥梁,以及让来自代表性不足群体的学生参与工程研究。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

jianmin qu其他文献

jianmin qu的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('jianmin qu', 18)}}的其他基金

18th US National Congress for Theoretical and Applied Mechanics; Chicago, Illinois; June 5-9, 2018
第十八届美国全国理论与应用力学大会;
  • 批准号:
    1834409
  • 财政年份:
    2018
  • 资助金额:
    $ 33.49万
  • 项目类别:
    Standard Grant
An Interatomic Potential for LixSi Alloys and Its Applications to Lithiation Induced Deformation and Failure in Silicon
LixSi 合金的原子间势及其在锂化引起的硅变形和失效中的应用
  • 批准号:
    1624313
  • 财政年份:
    2015
  • 资助金额:
    $ 33.49万
  • 项目类别:
    Standard Grant
Collaborative Research: Nonlinear Ultrasonic Wave Mixing Techniques for Detecting Localized Fatigue Damage in Metallic Materials
合作研究:用于检测金属材料局部疲劳损伤的非线性超声波混合技术
  • 批准号:
    1613640
  • 财政年份:
    2015
  • 资助金额:
    $ 33.49万
  • 项目类别:
    Standard Grant
Collaborative Research: Nonlinear Ultrasonic Wave Mixing Techniques for Detecting Localized Fatigue Damage in Metallic Materials
合作研究:用于检测金属材料局部疲劳损伤的非线性超声波混合技术
  • 批准号:
    1363221
  • 财政年份:
    2014
  • 资助金额:
    $ 33.49万
  • 项目类别:
    Standard Grant
An Interatomic Potential for LixSi Alloys and Its Applications to Lithiation Induced Deformation and Failure in Silicon
LixSi 合金的原子间势及其在锂化引起的硅变形和失效中的应用
  • 批准号:
    1200075
  • 财政年份:
    2012
  • 资助金额:
    $ 33.49万
  • 项目类别:
    Standard Grant
2011 Society of Engineering Science Conference, Northwestern University, Evanston, Illinois; October 12-14, 2011
2011 工程科学学会会议,西北大学,伊利诺伊州埃文斯顿;
  • 批准号:
    1135129
  • 财政年份:
    2011
  • 资助金额:
    $ 33.49万
  • 项目类别:
    Standard Grant
Nonlinear Ultrasonic Techniques for Nondestructive Evaluation and Fatigue Life Prediction
用于无损评估和疲劳寿命预测的非线性超声技术
  • 批准号:
    0952391
  • 财政年份:
    2009
  • 资助金额:
    $ 33.49万
  • 项目类别:
    Standard Grant
An Electrochemomechanical Theory and Its Application to Solid Oxide Fuel Cells
电化学机械理论及其在固体氧化物燃料电池中的应用
  • 批准号:
    0946602
  • 财政年份:
    2009
  • 资助金额:
    $ 33.49万
  • 项目类别:
    Standard Grant
Nonlinear Ultrasonic Techniques for Nondestructive Evaluation and Fatigue Life Prediction
用于无损评估和疲劳寿命预测的非线性超声技术
  • 批准号:
    0653883
  • 财政年份:
    2007
  • 资助金额:
    $ 33.49万
  • 项目类别:
    Standard Grant
International Symposium on Macro-, Meso-, Micro- and Nano-Mechanics of Materials (MM2003)
材料宏观、细观、微观和纳米力学国际研讨会(MM2003)
  • 批准号:
    0326657
  • 财政年份:
    2003
  • 资助金额:
    $ 33.49万
  • 项目类别:
    Standard Grant

相似国自然基金

Research on Quantum Field Theory without a Lagrangian Description
  • 批准号:
    24ZR1403900
  • 批准年份:
    2024
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目
基于isomorph theory研究尘埃等离子体物理量的微观动力学机制
  • 批准号:
    12247163
  • 批准年份:
    2022
  • 资助金额:
    18.00 万元
  • 项目类别:
    专项项目
Toward a general theory of intermittent aeolian and fluvial nonsuspended sediment transport
  • 批准号:
  • 批准年份:
    2022
  • 资助金额:
    55 万元
  • 项目类别:
英文专著《FRACTIONAL INTEGRALS AND DERIVATIVES: Theory and Applications》的翻译
  • 批准号:
    12126512
  • 批准年份:
    2021
  • 资助金额:
    12.0 万元
  • 项目类别:
    数学天元基金项目
基于Restriction-Centered Theory的自然语言模糊语义理论研究及应用
  • 批准号:
    61671064
  • 批准年份:
    2016
  • 资助金额:
    65.0 万元
  • 项目类别:
    面上项目

相似海外基金

EAGER: IMPRESS-U: Random Matrix Theory and its Applications to Deep Learning
EAGER:IMPRESS-U:随机矩阵理论及其在深度学习中的应用
  • 批准号:
    2401227
  • 财政年份:
    2024
  • 资助金额:
    $ 33.49万
  • 项目类别:
    Standard Grant
The theory of meaning via dependent type semantics and its automatic verification
基于依赖类型语义的意义理论及其自动验证
  • 批准号:
    23H03452
  • 财政年份:
    2023
  • 资助金额:
    $ 33.49万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
The Possibility of Simmel's Theory of Sociability as a Form of Knowledge: Renewing the History of Sociology in the German-Speaking World and Interpreting its Contemporary Significance.
齐美尔的社交理论作为一种知识形式的可能性:更新德语世界的社会学史并解释其当代意义。
  • 批准号:
    23KJ1558
  • 财政年份:
    2023
  • 资助金额:
    $ 33.49万
  • 项目类别:
    Grant-in-Aid for JSPS Fellows
Quantification of brain state transition costs based on stochastic control theory and its application to cognitive neuroscience
基于随机控制理论的大脑状态转换成本量化及其在认知神经科学中的应用
  • 批准号:
    22KJ1172
  • 财政年份:
    2023
  • 资助金额:
    $ 33.49万
  • 项目类别:
    Grant-in-Aid for JSPS Fellows
Progress of Recursive Utility Maximization Theory and Its Applications
递归效用最大化理论及其应用进展
  • 批准号:
    23K01450
  • 财政年份:
    2023
  • 资助金额:
    $ 33.49万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Mean Field Game Theory and Its Application to Mathematical Finance
平均场博弈论及其在数学金融中的应用
  • 批准号:
    23KJ0648
  • 财政年份:
    2023
  • 资助金额:
    $ 33.49万
  • 项目类别:
    Grant-in-Aid for JSPS Fellows
Coincident estimation of cell elasticity and intracellular pressure by atomic force measurement and its elastic shell theory analysis
原子力测量细胞弹性和细胞内压力的一致估计及其弹性壳理论分析
  • 批准号:
    23H01143
  • 财政年份:
    2023
  • 资助金额:
    $ 33.49万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
A formal group theory-based model in primates for studying interactive social behavior and its dysfunction
用于研究互动社会行为及其功能障碍的基于正式群体理论的灵长类动物模型
  • 批准号:
    10567456
  • 财政年份:
    2023
  • 资助金额:
    $ 33.49万
  • 项目类别:
Elucidation of a Novel Functional Mechanism of Intravenous Anesthetics Based on the Membrane Lipid Theory and Its Application to Clinical Practice
基于膜脂理论的静脉麻醉药新作用机制的阐明及其在临床实践中的应用
  • 批准号:
    23K06361
  • 财政年份:
    2023
  • 资助金额:
    $ 33.49万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Non-perturbative methods to quantum field theory and its applications to superstring theory
量子场论的非微扰方法及其在超弦理论中的应用
  • 批准号:
    22KJ2096
  • 财政年份:
    2023
  • 资助金额:
    $ 33.49万
  • 项目类别:
    Grant-in-Aid for JSPS Fellows
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了