Some problems in number theory
数论中的一些问题
基本信息
- 批准号:0726463
- 负责人:
- 金额:$ 6.84万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2006
- 资助国家:美国
- 起止时间:2006-12-10 至 2009-05-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
The goal of this project is to study some classic problems in combinatorial and analytic number theory. More precisely, Yu will study (1) bounds for finite sets of integers satisfying some binary additive properties, and (2) rank 0 quadratic twists of elliptic curves over the rationals. The objects in study (1) are the generalized Sidon sets and additive 2-basis of integers. A new idea is introduced which captures the concentration of the sumset and the difference set. Along with the classic methods of discrete Fourier analysis, this new idea results in an improvement for currently the best upper bounds for the cardinalities of generalized Sidon sets. This new approach will also be employed to improve the lower bound for the 2-basis of integers. In study (2), Yu will show that, for any elliptic curve which posses a 2-isogeny over the rationals, a positive proportion of its quadratic twists have rank 0; and, for a pair of elliptic curves over the rationals, there are infinitely many squarefree integers D such that the quadratic twists of the two curves by the same D simultaneously have rank 0. To achieve these, techniques such as the first descent, sieve methods and estimation of character sums will be applied. Besides, Yu will try to use the similar methods to prove boundedness of the average rank of the quadratic twists of every elliptic curve over the rationals. The problem of bounding a (generalized) Sidon set has attracted a lot of attentions. While an upper bound for a generalized Sidon set has natural implication in the study of Fourier series from Sidon's work back in 1930's, it is also closely related to some other problems in harmonic analysis and continuous Ramsey theory. In the first part of this project, Yu studies the upper bounds for generalized Sidon sets, and use the new idea involved to study some related problems. In the other part of the project, Yu is devoted to studying some arithmetic of elliptic curves. Yu will partially solve a longstanding problem related to the rank of elliptic curves, and will also study some related problems.
本课题的目标是研究组合数论和解析数论中的一些经典问题。更确切地说,Yu将研究(1)满足某些二元可加性的有限整数集的界,以及(2)有理数上椭圆曲线的0阶二次扭转。研究(1)的对象是广义西顿集和整数的可加2基。引入了一种新的思想,即捕捉集和差集的集中。与经典的离散傅里叶分析方法一起,这一新的思想改进了目前广义西顿集的基数的最佳上界。这种新方法也将用于改进整数的2基下界。在研究(2)中,Yu将证明,对于任何在有理数上具有2-等根的椭圆曲线,其二次扭转有正比例为0;并且,对于一对有理数上的椭圆曲线,存在无限多个无平方整数D,使得两条曲线同时被同一个D所二次扭转的秩为0。为了实现这些,将应用诸如第一次下降、筛选方法和字符和估计等技术。此外,Yu将尝试用类似的方法证明每条椭圆曲线的二次扭转在有理数上的平均秩的有界性。(广义)西顿集的边界问题引起了人们的广泛关注。广义西顿集的上界在20世纪30年代西顿的傅立叶级数研究中有着自然的蕴涵,它也与谐波分析和连续拉姆齐理论中的其他一些问题密切相关。在本课题的第一部分,Yu研究了广义Sidon集的上界,并利用所涉及的新思想研究了一些相关问题。在项目的另一部分,Yu致力于研究椭圆曲线的一些算法。Yu将部分解决与椭圆曲线秩相关的长期问题,并将研究一些相关问题。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Gang Yu其他文献
Fault separation and detection for compound bearing-gear fault condition based on decomposition of marginal Hibert spectrum
基于边缘希伯特谱分解的轴承齿轮复合故障状态的故障分离与检测
- DOI:
- 发表时间:
2019 - 期刊:
- 影响因子:3.9
- 作者:
Changning Li;Gang Yu;Baochuan Fu;Huiyi Hu;Xueli Zhu;Qixin Zhu - 通讯作者:
Qixin Zhu
Influence of gender on OVA-induced airway inflammation in C57/B6J mice on a high-fat diet
性别对高脂饮食 C57/B6J 小鼠 OVA 诱导的气道炎症的影响
- DOI:
- 发表时间:
2018 - 期刊:
- 影响因子:0
- 作者:
Gang Yu;Li;Haiyan Li;Youyou Shao;Lei Chong;Hailin Zhang;Changchong Li - 通讯作者:
Changchong Li
Accountable CP-ABE with Public Verifiability: How to Effectively Protect the Outsourced Data in Cloud
可公开验证的负责任的CP-ABE:如何有效保护云中的外包数据
- DOI:
10.1142/s0129054117400147 - 发表时间:
2017-09 - 期刊:
- 影响因子:0.8
- 作者:
Gang Yu;Xiaoxiao Ma;Zhenfu Cao;Guang Zeng;Wenbao Han - 通讯作者:
Wenbao Han
Automated Fuzzy Segmentation Approach for Vessels in Computed Tomography Images
计算机断层扫描图像中血管的自动模糊分割方法
- DOI:
- 发表时间:
2011 - 期刊:
- 影响因子:2
- 作者:
Junfeng Gao;Pan Lin;Gang Yu - 通讯作者:
Gang Yu
Removal of micropollutants by an electrochemically driven UV/chlorine process for decentralized water treatment
通过电化学驱动的紫外线/氯工艺去除微污染物,进行分散式水处理
- DOI:
10.1016/j.watres.2020.116115 - 发表时间:
2020 - 期刊:
- 影响因子:12.8
- 作者:
Yinqiao Zhang;Huijiao Wang;Yang Li;Bin Wang;Jun Huang;Shubo Deng;Gang Yu;Yujue Wang - 通讯作者:
Yujue Wang
Gang Yu的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Gang Yu', 18)}}的其他基金
SBIR Phase I: High Information Density Displays Made with Semiconductor Polymers
SBIR 第一阶段:用半导体聚合物制成的高信息密度显示器
- 批准号:
9960811 - 财政年份:2000
- 资助金额:
$ 6.84万 - 项目类别:
Standard Grant
SBIR Phase II: Flexible Polymer Photodiode Arrays for Image Scanning and Digital Camera Applications
SBIR 第二阶段:用于图像扫描和数码相机应用的柔性聚合物光电二极管阵列
- 批准号:
9801432 - 财政年份:1998
- 资助金额:
$ 6.84万 - 项目类别:
Standard Grant
SBIR Phase I: Polymer Diode Arrays and Image Sensing Arrays: Large Area, Flexible Photon Sensors with High Photosensitivity
SBIR 第一阶段:聚合物二极管阵列和图像传感阵列:具有高光敏度的大面积、柔性光子传感器
- 批准号:
9660975 - 财政年份:1997
- 资助金额:
$ 6.84万 - 项目类别:
Standard Grant
相似国自然基金
复杂图像处理中的自由非连续问题及其水平集方法研究
- 批准号:60872130
- 批准年份:2008
- 资助金额:28.0 万元
- 项目类别:面上项目
相似海外基金
Some problems at the interface of harmonic analysis, number theory, and combinatorics
调和分析、数论和组合学接口的一些问题
- 批准号:
1600840 - 财政年份:2016
- 资助金额:
$ 6.84万 - 项目类别:
Continuing Grant
Some problems in analytic and computational number theory
解析数论和计算数论中的一些问题
- 批准号:
238850-2010 - 财政年份:2014
- 资助金额:
$ 6.84万 - 项目类别:
Discovery Grants Program - Individual
Some problems in analytic and computational number theory
解析数论和计算数论中的一些问题
- 批准号:
238850-2010 - 财政年份:2013
- 资助金额:
$ 6.84万 - 项目类别:
Discovery Grants Program - Individual
Some problems in analytic and computational number theory
解析数论和计算数论中的一些问题
- 批准号:
238850-2010 - 财政年份:2012
- 资助金额:
$ 6.84万 - 项目类别:
Discovery Grants Program - Individual
Some problems in analytic and computational number theory
解析数论和计算数论中的一些问题
- 批准号:
238850-2010 - 财政年份:2011
- 资助金额:
$ 6.84万 - 项目类别:
Discovery Grants Program - Individual
Some problems in analytic and computational number theory
解析数论和计算数论中的一些问题
- 批准号:
238850-2010 - 财政年份:2010
- 资助金额:
$ 6.84万 - 项目类别:
Discovery Grants Program - Individual
Some problems in analytic and computational number theory
解析数论和计算数论中的一些问题
- 批准号:
238850-2005 - 财政年份:2009
- 资助金额:
$ 6.84万 - 项目类别:
Discovery Grants Program - Individual
Some problems in analytic and computational number theory
解析数论和计算数论中的一些问题
- 批准号:
238850-2005 - 财政年份:2008
- 资助金额:
$ 6.84万 - 项目类别:
Discovery Grants Program - Individual
Some problems in analytic and computational number theory
解析数论和计算数论中的一些问题
- 批准号:
238850-2005 - 财政年份:2006
- 资助金额:
$ 6.84万 - 项目类别:
Discovery Grants Program - Individual














{{item.name}}会员




