Biologically-Inspired Networking and Computation in Large-Scale Autonomous Sensor Networks
大规模自主传感器网络中的仿生网络和计算
基本信息
- 批准号:0726740
- 负责人:
- 金额:$ 23万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2007
- 资助国家:美国
- 起止时间:2007-10-01 至 2011-09-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Large-scale autonomous wireless sensor networks that provide complete situation awareness and ubiquitous computing environments will become an essential part of the future network infrastructure. Node collaboration is the key for the success of sensor networks due to the fact that each node itself is limited by sensing range, power, and processing ability. On the other hand, node competition is a consequence of networking multiple nodes with limited time, space, and frequency resources. For small-scale networks, node collaboration and competition can be optimally balanced by a centralized scheme that has the access to all the node information and further has the control over the whole network. However, in a large-scale sensor network, which may involve millions of nodes and cover a large geographic area, it is impossible to afford a centralized scheme that manages the network-wide functional collaboration and resource competition.This research program focuses on large-scale sensor networks and investigates the fundamental mechanism that controls node collaboration and competition in a purely distributed manner, with joint considerations of the three key elements in sensor networkdesign: topology control, information transmission, and information processing. The design methodology is motivated by some recent biological research results on how billions of cells in our body control their growth and interaction with each other in a bothcollaborative and competitive way. The deliverables are general theorems, performance bounds, and analytical system models, which capture the interactive dynamics of various aspects of large-scale networking. These models define not only the fundamental principles regarding collaboration and competition among neighboring nodes, but also the adaptation rules that control each node to learn the environment and adjust its behavior. They are crucial to the future design of distributed networking protocols that are embedded into each sensor node, which mimics the genetic code inherited in each biological cell.
提供完整态势感知和普适计算环境的大规模自主无线传感器网络将成为未来网络基础设施的重要组成部分。节点协作是传感器网络成功的关键,因为每个节点本身受到传感范围、功率和处理能力的限制。另一方面,节点竞争是在有限的时间、空间和频率资源下使多个节点联网的结果。对于小规模网络,中心化方案可以访问所有节点信息并进一步控制整个网络,从而实现节点协作和竞争的最佳平衡。然而,在可能涉及数百万个节点和覆盖大地理区域的大型传感器网络中,不可能提供一个集中的方案来管理全网的功能协作和资源竞争。本研究计划专注于大规模传感器网络,并研究以纯分布式方式控制节点协作和竞争的基本机制,并联合考虑传感器网络设计中的三个关键要素:拓扑控制、信息传输和信息处理。这种设计方法的灵感来自于最近的一些生物学研究结果,这些研究是关于我们身体中数十亿细胞如何以合作和竞争的方式控制它们的生长和相互作用的。可交付成果是一般定理、性能界限和分析系统模型,它们捕获了大规模网络的各个方面的交互动态。这些模型不仅定义了相邻节点之间协作和竞争的基本原则,而且还定义了控制每个节点学习环境和调整自身行为的适应规则。它们对于嵌入到每个传感器节点的分布式网络协议的未来设计至关重要,这些节点模仿每个生物细胞中遗传的遗传密码。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Shuguang Cui其他文献
Very-Short-Term Solar Forecasting with Long Short-Term Memory (LSTM) Network
使用长短期记忆 (LSTM) 网络进行极短期太阳能预测
- DOI:
- 发表时间:
2020 - 期刊:
- 影响因子:0
- 作者:
Yanbin Lin;Dongliang Duan;Xueming Hong;Xiang Cheng;Liuqing Yang;Shuguang Cui - 通讯作者:
Shuguang Cui
SA-GS: Semantic-Aware Gaussian Splatting for Large Scene Reconstruction with Geometry Constrain
SA-GS:用于具有几何约束的大场景重建的语义感知高斯泼溅
- DOI:
10.48550/arxiv.2405.16923 - 发表时间:
2024 - 期刊:
- 影响因子:0
- 作者:
Butian Xiong;Xiaoyu Ye;Tze Ho Elden Tse;Kai Han;Shuguang Cui;Zhen Li - 通讯作者:
Zhen Li
Distributed Kalman Filtering over Big Data: Analysis Through Large Deviations of Random Riccati Equations
大数据分布式卡尔曼滤波:随机Riccati方程大偏差分析
- DOI:
- 发表时间:
2014 - 期刊:
- 影响因子:0
- 作者:
Di Li;S. Kar;José M. F. Moura;H. Poor;Shuguang Cui - 通讯作者:
Shuguang Cui
Convergence results in distributed Kalman filtering
分布式卡尔曼滤波的收敛结果
- DOI:
- 发表时间:
2011 - 期刊:
- 影响因子:0
- 作者:
S. Kar;Shuguang Cui;H. Poor;José M. F. Moura - 通讯作者:
José M. F. Moura
Optimization Techniques in Wireless Communications
无线通信中的优化技术
- DOI:
10.1155/2009/567416 - 发表时间:
2009 - 期刊:
- 影响因子:2.6
- 作者:
S. Vorobyov;Shuguang Cui;Yonina C. Eldar;Wing;andWolfgang Utschick - 通讯作者:
andWolfgang Utschick
Shuguang Cui的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Shuguang Cui', 18)}}的其他基金
Non-Ergodic Wireless Sensing: Fundamental Tradeoffs and Optimal Transmission Schemes
非遍历无线传感:基本权衡和最佳传输方案
- 批准号:
1659025 - 财政年份:2016
- 资助金额:
$ 23万 - 项目类别:
Standard Grant
Non-Ergodic Wireless Sensing: Fundamental Tradeoffs and Optimal Transmission Schemes
非遍历无线传感:基本权衡和最佳传输方案
- 批准号:
1508051 - 财政年份:2015
- 资助金额:
$ 23万 - 项目类别:
Standard Grant
Collaborative Research: CCSS: A Distributed Computation Framework for Networked Sensing and Control
合作研究:CCSS:网络传感和控制的分布式计算框架
- 批准号:
1305979 - 财政年份:2013
- 资助金额:
$ 23万 - 项目类别:
Standard Grant
EAGER: Cognitive Radio with 2-D Cognition: Dynamic Spectrum vs. Power Accesses
EAGER:具有 2D 认知功能的认知无线电:动态频谱与电源接入
- 批准号:
1265227 - 财政年份:2013
- 资助金额:
$ 23万 - 项目类别:
Standard Grant
相似海外基金
BAMBOO - Build scAled Modular Bamboo-inspired Offshore sOlar systems
BAMBOO - 构建规模化模块化竹子式海上太阳能系统
- 批准号:
10109981 - 财政年份:2024
- 资助金额:
$ 23万 - 项目类别:
EU-Funded
CAREER: Origami-inspired design for a tissue engineered heart valve
职业:受折纸启发的组织工程心脏瓣膜设计
- 批准号:
2337540 - 财政年份:2024
- 资助金额:
$ 23万 - 项目类别:
Continuing Grant
Convergence Accelerator Track M: Bio-Inspired Design of Robot Hands for Use-Driven Dexterity
融合加速器轨道 M:机器人手的仿生设计,实现使用驱动的灵活性
- 批准号:
2344109 - 财政年份:2024
- 资助金额:
$ 23万 - 项目类别:
Standard Grant
CAREER: Scalable Physics-Inspired Ising Computing for Combinatorial Optimizations
职业:用于组合优化的可扩展物理启发伊辛计算
- 批准号:
2340453 - 财政年份:2024
- 资助金额:
$ 23万 - 项目类别:
Continuing Grant
CAREER: SHF: Bio-Inspired Microsystems for Energy-Efficient Real-Time Sensing, Decision, and Adaptation
职业:SHF:用于节能实时传感、决策和适应的仿生微系统
- 批准号:
2340799 - 财政年份:2024
- 资助金额:
$ 23万 - 项目类别:
Continuing Grant
NSF-NSERC: Fairness Fundamentals: Geometry-inspired Algorithms and Long-term Implications
NSF-NSERC:公平基础:几何启发的算法和长期影响
- 批准号:
2342253 - 财政年份:2024
- 资助金额:
$ 23万 - 项目类别:
Standard Grant
NSF Convergence Accelerator Track L: Intelligent Nature-inspired Olfactory Sensors Engineered to Sniff (iNOSES)
NSF 融合加速器轨道 L:受自然启发的智能嗅觉传感器,专为嗅探而设计 (iNOSES)
- 批准号:
2344256 - 财政年份:2024
- 资助金额:
$ 23万 - 项目类别:
Standard Grant
Development of Integrated Quantum Inspired Algorithms for Shapley Value based Fast and Interpretable Feature Subset Selection
基于 Shapley 值的快速且可解释的特征子集选择的集成量子启发算法的开发
- 批准号:
24K15089 - 财政年份:2024
- 资助金额:
$ 23万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
NSF Convergence Accelerator Track M: Bio-Inspired Surface Design for High Performance Mechanical Tracking Solar Collection Skins in Architecture
NSF Convergence Accelerator Track M:建筑中高性能机械跟踪太阳能收集表皮的仿生表面设计
- 批准号:
2344424 - 财政年份:2024
- 资助金额:
$ 23万 - 项目类别:
Standard Grant
Collaborative Research:CIF:Small:Fisher-Inspired Approach to Quickest Change Detection for Score-Based Models
合作研究:CIF:Small:Fisher 启发的基于评分模型的最快变化检测方法
- 批准号:
2334898 - 财政年份:2024
- 资助金额:
$ 23万 - 项目类别:
Standard Grant