NSF-NSERC: Fairness Fundamentals: Geometry-inspired Algorithms and Long-term Implications

NSF-NSERC:公平基础:几何启发的算法和长期影响

基本信息

  • 批准号:
    2342253
  • 负责人:
  • 金额:
    $ 44万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2024
  • 资助国家:
    美国
  • 起止时间:
    2024-04-01 至 2027-03-31
  • 项目状态:
    未结题

项目摘要

It is well-known that machine learning algorithms can show bias in decision making towards certain individuals or groups with sensitive attributes such as gender and ethnicity. This bias can be due to several reasons including biases in data, algorithmic biases, and biases in human interpretation. To mitigate this effect, one needs to better understand the learning procedure, especially when popular deep learning models are employed in order to aid decisionmakers in making fair machine decisions. Moreover, in sequential decision making setups, it is important to consider the long-term impact of automated decisions on fairness. This proposal aims to tackle the fairness challenge in machine learning by focusing on the effect of different biases on a deep learning model, as well as being cognizant of the long-term effects of fairness. The project engages undergraduate students in research and has several outreach activities involving pre-college students.The goal of this project is to develop theoretical frameworks for studying how data biases impact the fairness of learning-based decision-making algorithms in both static and dynamic settings. First, the effect of data imbalances on the geometry of models learned by deep neural networks when various training loss functions are utilized will be investigated. Building on the theoretical framework, principled algorithms will be designed that provably enhance fairness in decision making. Finally, models will be developed that tackle the challenge of guaranteeing fairness in dynamic settings where group imbalance and feature distributions evolve over time depending on the decisions. While the project focus is on theoretical understanding and formalizing fairness concepts in machine learning, various numerical evaluations will be conducted to implement the developed algorithms throughout the duration of the project.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
众所周知,机器学习算法可能会在决策中对某些具有敏感属性(如性别和种族)的个人或群体表现出偏见。这种偏差可能是由于几个原因,包括数据偏差,算法偏差和人类解释的偏差。为了减轻这种影响,人们需要更好地理解学习过程,特别是当使用流行的深度学习模型来帮助决策者做出公平的机器决策时。此外,在顺序决策设置中,重要的是要考虑自动化决策对公平性的长期影响。该提案旨在通过关注不同偏见对深度学习模型的影响,以及认识到公平性的长期影响,来解决机器学习中的公平性挑战。该项目吸引本科生参与研究,并有几个涉及大学预科生的推广活动。该项目的目标是开发理论框架,研究数据偏差如何影响静态和动态环境中基于学习的决策算法的公平性。首先,将研究当使用各种训练损失函数时,数据不平衡对深度神经网络学习的模型几何结构的影响。在理论框架的基础上,将设计原则性算法,可证明提高决策的公平性。最后,将开发模型,以解决在动态环境中保证公平性的挑战,在动态环境中,组不平衡和特征分布随着时间的推移而变化,这取决于决策。虽然该项目的重点是理论理解和形式化的机器学习的公平概念,各种数值评估将进行实施开发的算法在整个项目的持续时间。这个奖项反映了NSF的法定使命,并已被认为是值得支持的评估使用基金会的智力价值和更广泛的影响审查标准。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Ramtin Pedarsani其他文献

Asynchronous and noncoherent neighbor discovery for the IoT using sparse-graph codes
使用稀疏图代码的物联网异步和非相干邻居发现
Control and Management of Urban Traffic Networks with Mixed Autonomy
Optimality of Least-squares for Classification in Gaussian-Mixture Models
高斯混合模型中分类的最小二乘最优性
Capacity-approaching PhaseCode for low-complexity compressive phase retrieval
用于低复杂度压缩相位检索的接近容量的 PhaseCode
Robust scheduling for flexible processing networks
灵活处理网络的鲁棒调度
  • DOI:
    10.1017/apr.2017.14
  • 发表时间:
    2016
  • 期刊:
  • 影响因子:
    1.2
  • 作者:
    Ramtin Pedarsani;J. Walrand;Y. Zhong
  • 通讯作者:
    Y. Zhong

Ramtin Pedarsani的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Ramtin Pedarsani', 18)}}的其他基金

Collaborative Research: CIF: Small: Robust Machine Learning under Sparse Adversarial Attacks
协作研究:CIF:小型:稀疏对抗攻击下的鲁棒机器学习
  • 批准号:
    2236483
  • 财政年份:
    2023
  • 资助金额:
    $ 44万
  • 项目类别:
    Standard Grant
Collaborative Research: Mixed-Autonomy Traffic Networks: Routing Games and Learning Human Choice Models
合作研究:混合自主交通网络:路由博弈和学习人类选择模型
  • 批准号:
    1952920
  • 财政年份:
    2020
  • 资助金额:
    $ 44万
  • 项目类别:
    Standard Grant
MLWiNS: Optimization and Coding Theory for Fast and Robust Wireless Distributed Learning
MLWiNS:快速、稳健的无线分布式学习的优化和编码理论
  • 批准号:
    2003035
  • 财政年份:
    2020
  • 资助金额:
    $ 44万
  • 项目类别:
    Standard Grant
CIF: Small: A Systematic Approach to Adversarial Machine Learning: Sparsity-based Defenses and Locally Linear Attacks
CIF:小型:对抗性机器学习的系统方法:基于稀疏性的防御和局部线性攻击
  • 批准号:
    1909320
  • 财政年份:
    2019
  • 资助金额:
    $ 44万
  • 项目类别:
    Standard Grant
CRII: CIF: Next-Generation Group Testing for Neighbor Discovery in the IoT via Sparse-Graph Codes
CRII:CIF:通过稀疏图代码在物联网中进行邻居发现的下一代组测试
  • 批准号:
    1755808
  • 财政年份:
    2018
  • 资助金额:
    $ 44万
  • 项目类别:
    Standard Grant

相似海外基金

NSF-NSERC: SaTC: CORE: Small: Managing Risks of AI-generated Code in the Software Supply Chain
NSF-NSERC:SaTC:核心:小型:管理软件供应链中人工智能生成代码的风险
  • 批准号:
    2341206
  • 财政年份:
    2024
  • 资助金额:
    $ 44万
  • 项目类别:
    Standard Grant
NSF-NSERC: Building a two-qubit controlled phase gate using laterally coupled semiconductor quantum dots
NSF-NSERC:使用横向耦合半导体量子点构建两个量子位控制的相位门
  • 批准号:
    2317047
  • 财政年份:
    2023
  • 资助金额:
    $ 44万
  • 项目类别:
    Standard Grant
NSERC/BC SPCA Industrial Research Chair in Animal Welfare
NSERC/BC SPCA 动物福利工业研究主席
  • 批准号:
    554745-2019
  • 财政年份:
    2022
  • 资助金额:
    $ 44万
  • 项目类别:
    Industrial Research Chairs
L2M NSERC - A Novel Mechanical Sensor for Online Flow Rate Monitoring in Subsea Pipeline Networks
L2M NSERC - 用于海底管网在线流量监测的新型机械传感器
  • 批准号:
    580749-2023
  • 财政年份:
    2022
  • 资助金额:
    $ 44万
  • 项目类别:
    Idea to Innovation
L2M NSERC - Terahertz wired technology for future networks
L2M NSERC - 面向未来网络的太赫兹有线技术
  • 批准号:
    580661-2023
  • 财政年份:
    2022
  • 资助金额:
    $ 44万
  • 项目类别:
    Idea to Innovation
NSERC CREATE in Science Leadership for Global Sustainability
NSERC CREATE 促进全球可持续发展的科学领导力
  • 批准号:
    543314-2020
  • 财政年份:
    2022
  • 资助金额:
    $ 44万
  • 项目类别:
    Collaborative Research and Training Experience
NSERC Industrial Research Chair for Colleges in Northern Mine Remediation
NSERC 北方矿山修复学院工业研究主席
  • 批准号:
    533814-2018
  • 财政年份:
    2022
  • 资助金额:
    $ 44万
  • 项目类别:
    Industrial Research Chairs for Colleges Grants
NSERC/RBC Associate Industrial Research Chair in Data Security
NSERC/RBC 数据安全工业研究副主任
  • 批准号:
    548635-2018
  • 财政年份:
    2022
  • 资助金额:
    $ 44万
  • 项目类别:
    Industrial Research Chairs
NSERC Chair for Women in Science and Engineering (Québec)
NSERC 科学与工程领域女性主席(魁北克)
  • 批准号:
    548938-2019
  • 财政年份:
    2022
  • 资助金额:
    $ 44万
  • 项目类别:
    Chairs for Women in Science and Engineering - Project
L2M NSERC - Portfolio Management System for the Energy Industry
L2M NSERC - 能源行业投资组合管理系统
  • 批准号:
    580693-2023
  • 财政年份:
    2022
  • 资助金额:
    $ 44万
  • 项目类别:
    Idea to Innovation
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了