Scalable Analysis for Customer Contact Centers
客户联络中心的可扩展分析
基本信息
- 批准号:0727400
- 负责人:
- 金额:--
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2007
- 资助国家:美国
- 起止时间:2007-07-01 至 2011-06-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
This grant provides funding for the development of tools that help analyze the performance of customer contact centers. Customer Contact Centers are organizations or entities providing service to customers via chat-box, e-mail, phone, or other communication channels. Such centers play an increasingly dominant role in society. Customer contact centers can be of any size and appear in a variety of places. Most US companies employ moderate- or small-size call centers. For multiserver systems that model customer contact centers, the PIs propose to develop universal, scalable approximations for various performance measures such as the fraction of customers that encounter a delay. These approximations will be computationally efficient for both small and large systems, and for systems that may not necessarily be critically loaded (think of call centers for emergencies). The PIs will pay special attention to realistic model features like general service time distribution and customer abandonment, leading to the challenge of developing algorithms for high dimensional diffusion processes. The proposed research will involve a wide range of techniques like numerical solution of partial differential equations, diffusion processes, extreme value theory, large deviations and analytic techniques; many of which are new in this area.If successful, this research will result in single universal method for call center staffing that is applicable in a variety of settings. The algorithm will be implemented. The proposed software implementation provides a practical tool to allow one to study the impact of service time variability and patience time distribution on system performance. The PIs intend to make the software available to academic researchers, practitioners from industry, and university students.
这笔拨款为开发有助于分析客户联络中心绩效的工具提供资金。客户联络中心是通过聊天、电子邮件、电话或其他通信渠道向客户提供服务的组织或实体。这些中心在社会中发挥着越来越重要的作用。客户联络中心可以是任何规模的,出现在各种各样的地方。大多数美国公司都有中型或小型的呼叫中心。对于为客户联络中心建模的多服务器系统,pi建议为各种性能度量(如遇到延迟的客户比例)开发通用的、可扩展的近似。这些近似对于小型和大型系统以及可能不一定是临界负载的系统(想想紧急情况的呼叫中心)来说都是计算效率很高的。pi将特别关注实际模型特征,如一般服务时间分布和客户放弃,这将导致开发高维扩散过程算法的挑战。拟开展的研究将涉及广泛的技术,如偏微分方程的数值解、扩散过程、极值理论、大偏差和分析技术;其中很多都是这个领域的新产品。如果成功,这项研究将产生适用于各种设置的呼叫中心人员配置的单一通用方法。算法将被实现。提出的软件实现提供了一个实用的工具,允许人们研究服务时间可变性和耐心时间分布对系统性能的影响。pi打算将该软件提供给学术研究人员、行业从业者和大学生。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Jiangang Dai其他文献
Network Revenue Management with Cancellations and No-shows
- DOI:
poms.12907 - 发表时间:
2019 - 期刊:
- 影响因子:
- 作者:
Jiangang Dai;Anton J. Kleywegt;Yongbo Xiao - 通讯作者:
Yongbo Xiao
Jiangang Dai的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Jiangang Dai', 18)}}的其他基金
Diffusion Models for Performance Analysis of Large-Scale Service Systems
大规模服务系统性能分析的扩散模型
- 批准号:
1537795 - 财政年份:2015
- 资助金额:
-- - 项目类别:
Standard Grant
Workshop: Reflected Brownian Motions, Stochastic Networks, and their Applications; Minneapolis, Minnesota; June 25-27, 2015
研讨会:反射布朗运动、随机网络及其应用;
- 批准号:
1450358 - 财政年份:2014
- 资助金额:
-- - 项目类别:
Standard Grant
High Fidelity Modeling and Two-Time-Scale Analysis for Hospital Inpatient Flow Management
医院住院流程管理的高保真建模和双时间尺度分析
- 批准号:
1335724 - 财政年份:2013
- 资助金额:
-- - 项目类别:
Standard Grant
Analysis and Control of Large-scale Service Systems
大型服务系统分析与控制
- 批准号:
1030589 - 财政年份:2010
- 资助金额:
-- - 项目类别:
Standard Grant
Dynamic Resource Allocation in Stochastic Processing Networks
随机处理网络中的动态资源分配
- 批准号:
0300599 - 财政年份:2003
- 资助金额:
-- - 项目类别:
Continuing Grant
U.S.-Korea Cooperative Research on Multiclass Queueing Networks
美韩多类排队网络合作研究
- 批准号:
9605190 - 财政年份:1997
- 资助金额:
-- - 项目类别:
Standard Grant
NSF Young Investigator: Investigation of Multi-Class Queuing Networks
NSF 青年研究员:多类排队网络的研究
- 批准号:
9457336 - 财政年份:1994
- 资助金额:
-- - 项目类别:
Continuing Grant
Mathematical Sciences: Several Questions in Probability
数学科学:概率中的几个问题
- 批准号:
9209586 - 财政年份:1992
- 资助金额:
-- - 项目类别:
Continuing Grant
相似国自然基金
Scalable Learning and Optimization: High-dimensional Models and Online Decision-Making Strategies for Big Data Analysis
- 批准号:
- 批准年份:2024
- 资助金额:万元
- 项目类别:合作创新研究团队
Intelligent Patent Analysis for Optimized Technology Stack Selection:Blockchain BusinessRegistry Case Demonstration
- 批准号:
- 批准年份:2024
- 资助金额:万元
- 项目类别:外国学者研究基金项目
基于Meta-analysis的新疆棉花灌水增产模型研究
- 批准号:41601604
- 批准年份:2016
- 资助金额:22.0 万元
- 项目类别:青年科学基金项目
大规模微阵列数据组的meta-analysis方法研究
- 批准号:31100958
- 批准年份:2011
- 资助金额:20.0 万元
- 项目类别:青年科学基金项目
用“后合成核磁共振分析”(retrobiosynthetic NMR analysis)技术阐明青蒿素生物合成途径
- 批准号:30470153
- 批准年份:2004
- 资助金额:22.0 万元
- 项目类别:面上项目
相似海外基金
Exploring Hotel Customer Experiences in Japan via Big Data and Large Language Model Analysis
通过大数据和大语言模型分析探索日本酒店客户体验
- 批准号:
24K21025 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Grant-in-Aid for Early-Career Scientists
Performance Analysis and Optimization in Stochastic Service and Manufacturing Systems with Customer Choices
客户选择的随机服务和制造系统的性能分析和优化
- 批准号:
RGPIN-2019-06364 - 财政年份:2022
- 资助金额:
-- - 项目类别:
Discovery Grants Program - Individual
Performance Analysis and Optimization in Stochastic Service and Manufacturing Systems with Customer Choices
客户选择的随机服务和制造系统的性能分析和优化
- 批准号:
RGPIN-2019-06364 - 财政年份:2021
- 资助金额:
-- - 项目类别:
Discovery Grants Program - Individual
Expanding LightOx Probes capability through analytical methodologies and analysis to broaden customer base.
通过分析方法和分析扩展 LightOx Probes 的功能,以扩大客户群。
- 批准号:
73228 - 财政年份:2020
- 资助金额:
-- - 项目类别:
Feasibility Studies
Social- Semantic Analysis of Social Media Interactions to assess customer satisfaction in transit agencies
社交媒体交互的社会语义分析,以评估公交机构的客户满意度
- 批准号:
536827-2018 - 财政年份:2020
- 资助金额:
-- - 项目类别:
Collaborative Research and Development Grants
Performance Analysis and Optimization in Stochastic Service and Manufacturing Systems with Customer Choices
客户选择的随机服务和制造系统的性能分析和优化
- 批准号:
RGPIN-2019-06364 - 财政年份:2020
- 资助金额:
-- - 项目类别:
Discovery Grants Program - Individual
Deep learning solution for improved conversational data analysis for distributed customer facing teams
用于改进面向分布式客户团队的对话数据分析的深度学习解决方案
- 批准号:
80547 - 财政年份:2020
- 资助金额:
-- - 项目类别:
Collaborative R&D
Analysis of Organizational Transformation for Customer Orientation in Japanese Service Idustries
日本服务业顾客导向的组织转型分析
- 批准号:
19H01521 - 财政年份:2019
- 资助金额:
-- - 项目类别:
Grant-in-Aid for Scientific Research (B)
Expanding LightOx Probes capability through analytical methodologies and analysis to broaden customer base.
通过分析方法和分析扩展 LightOx Probes 的功能,以扩大客户群。
- 批准号:
105560 - 财政年份:2019
- 资助金额:
-- - 项目类别:
Collaborative R&D
Research on manufacturing matching methods based on analysis of patent information and customer value
基于专利信息和客户价值分析的制造匹配方法研究
- 批准号:
19K01888 - 财政年份:2019
- 资助金额:
-- - 项目类别:
Grant-in-Aid for Scientific Research (C)