GOALI: Nanoparticle-Enabled Printing of Large-Area Electronic Hierarchical Systems

GOALI:大面积电子分层系统的纳米粒子打印

基本信息

  • 批准号:
    0727960
  • 负责人:
  • 金额:
    $ 49万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2007
  • 资助国家:
    美国
  • 起止时间:
    2007-08-01 至 2011-07-31
  • 项目状态:
    已结题

项目摘要

The research objective of this GOALI project is to create new low temperature, nanoparticle-based printing processes for inorganic semiconductor nanoparticle inks in order to enable fabrication of low cost, all-printed devices for wireless applications, such as WiFi and cellular communications. Although inorganic semiconductor nanoparticles may sinter at lower temperatures than their bulk counterparts, these temperatures are generally significantly higher than 150C, the maximum processing temperature allowable with low cost polyester or paper substrates. New low temperature sintering processes will be explored to improve the semiconducting performance of the printed nanoparticle films without increasing the maximum temperature during processing above this target temperature. The proposed approach includes preparation of nanoscale films from model semiconductor nanoparticle inks using non-proprietary benchmark printing platforms. The nanostructural characteristics of the starting powders and resulting films will be related quantitatively to device performance and film mobility. The processing conditions necessary to increase particle-particle contact area will be explored using two new processing methods: precipitation sintering for oxide semiconductors and metal nanofilm mediated sintering for core-shell structured elemental nanopowders. This project will focus on inorganic semiconductor nanoparticle ink systems with low toxicity, whose elemental constituents have not been banned in electronics by the European Union. (Recent EU legislation (WEEE and RoHS) bans the use of Cd, Pb, and Hg in electrical and electronic devices.)By combining theory and in-situ and ex-situ electron microscopy experiments with measurements of the semiconducting performance of nanoparticle printed films, the proposed research will seek a fundamental understanding of how nanoparticle structure and the resulting structure of the nanoparticle-based printed films limit the semiconducting properties in the films as compared that observed in bulk single crystals. This research project will contribute to the understanding of size- and shape-dependence of nanoparticle sintering, to the understanding of interface processes for the proposed innovative processing techniques, and to the establishment of materials science-based guidelines for the design of nanoparticles, nanoparticle inks, and printing processes for current and next generation printed electronics.The impact of this research is expected to be significant, allowing the use of printing technologies in a wide range of applications, including but not limited to, emissive flexible displays, all-printed mobile devices (e.g., a paper cellphone) and pervasive use of high performance sensors. This is far beyond what is currently achievable through non-sintered inorganic ink systems or organic printed electronics. Such low temperature sintering processes might be adaptable, as well, to the fabrication of inorganic nanoparticle coatings and thin films for a wide range of non-electrical applications.
这个GOALI项目的研究目标是为无机半导体纳米颗粒油墨创造新的低温、纳米颗粒印刷工艺,以便制造低成本、全印刷的无线应用设备,如WiFi和蜂窝通信。尽管无机半导体纳米颗粒可以在较低的温度下烧结,但这些温度通常明显高于150℃,这是低成本聚酯或纸质基材允许的最高加工温度。研究人员将探索新的低温烧结工艺,以提高印刷纳米颗粒薄膜的半导体性能,同时不提高加工过程中的最高温度。提出的方法包括利用非专有的基准印刷平台从模型半导体纳米颗粒油墨制备纳米级薄膜。起始粉末和生成薄膜的纳米结构特性将定量地与器件性能和薄膜迁移率相关。利用两种新的加工方法:氧化物半导体的沉淀烧结和核壳结构元素纳米粉末的金属纳米膜介导烧结,探索增加颗粒-颗粒接触面积所需的加工条件。该项目将专注于低毒性无机半导体纳米颗粒油墨系统,其元素成分尚未被欧盟禁止在电子产品中使用。(最近欧盟立法(WEEE和RoHS)禁止在电气和电子设备中使用Cd、Pb和Hg。)通过将理论和原位和非原位电子显微镜实验与纳米颗粒印刷薄膜的半导体性能测量相结合,拟议的研究将寻求对纳米颗粒结构和基于纳米颗粒的印刷薄膜的最终结构如何限制薄膜中的半导体性能的基本理解,与在大块单晶中观察到的相比。该研究项目将有助于理解纳米颗粒烧结的尺寸和形状依赖性,理解所提出的创新加工技术的界面过程,并为当前和下一代印刷电子产品的纳米颗粒、纳米颗粒油墨和印刷工艺的设计建立基于材料科学的指导方针。这项研究的影响预计将是重大的,允许在广泛的应用中使用印刷技术,包括但不限于,发射柔性显示器,全印刷移动设备(例如,纸质手机)和高性能传感器的普遍使用。这远远超出了目前通过非烧结无机油墨系统或有机印刷电子产品所能实现的。这种低温烧结工艺也可能适用于制造无机纳米颗粒涂层和薄膜,用于广泛的非电应用。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Carol Handwerker其他文献

Carol Handwerker的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Carol Handwerker', 18)}}的其他基金

2019 Physical Metallurgy GRC & GRS
2019物理冶金GRC
  • 批准号:
    1930043
  • 财政年份:
    2019
  • 资助金额:
    $ 49万
  • 项目类别:
    Standard Grant
IGERT: Global Traineeship in Sustainable Electronics
IGERT:可持续电子产品全球培训
  • 批准号:
    1144843
  • 财政年份:
    2012
  • 资助金额:
    $ 49万
  • 项目类别:
    Continuing Grant
Planning Grant: I/UCRC for Resource Recovery and Recycling
规划补助金:I/UCRC 资源回收和再循环
  • 批准号:
    1035027
  • 财政年份:
    2010
  • 资助金额:
    $ 49万
  • 项目类别:
    Standard Grant

相似海外基金

CDS&E: Machine learning enabled modelling of dynamic nanoparticle catalysts
CDS
  • 批准号:
    2152767
  • 财政年份:
    2022
  • 资助金额:
    $ 49万
  • 项目类别:
    Standard Grant
ISS: Plasmonic Bubble Enabled Nanoparticle Deposition under Micro-Gravity
ISS:微重力下等离子气泡实现纳米颗粒沉积
  • 批准号:
    2224307
  • 财政年份:
    2022
  • 资助金额:
    $ 49万
  • 项目类别:
    Standard Grant
Collaborative Research: Nanoparticle-Enabled Mechanisms for Growth Control in Immiscible Alloys under Regular Cooling
合作研究:常规冷却下不混溶合金生长控制的纳米颗粒机制
  • 批准号:
    2009198
  • 财政年份:
    2019
  • 资助金额:
    $ 49万
  • 项目类别:
    Standard Grant
Topic 353: Highly Accurate Low Cost ctDNA Diagnostics with Magnetic Nanoparticle Enabled Automated Sample Prep - Moonshot
主题 353:利用磁性纳米粒子实现自动化样品制备的高精度低成本 ctDNA 诊断 - Moonshot
  • 批准号:
    10018679
  • 财政年份:
    2019
  • 资助金额:
    $ 49万
  • 项目类别:
Nanoparticle enabled near-infrared fluorescence guided small lung tumor localization
纳米颗粒实现近红外荧光引导小肺部肿瘤定位
  • 批准号:
    17K10776
  • 财政年份:
    2017
  • 资助金额:
    $ 49万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
CAREER: Cyber-enabled Multiscale Methodology for Hybrid Soft Materials-based Nanoparticle Design
职业:基于网络的混合软材料纳米粒子设计的多尺度方法
  • 批准号:
    1654325
  • 财政年份:
    2017
  • 资助金额:
    $ 49万
  • 项目类别:
    Continuing Grant
Collaborative Research: Nanoparticle-Enabled Mechanisms for Growth Control in Immiscible Alloys under Regular Cooling
合作研究:常规冷却下不混溶合金生长控制的纳米颗粒机制
  • 批准号:
    1562252
  • 财政年份:
    2016
  • 资助金额:
    $ 49万
  • 项目类别:
    Standard Grant
Collaborative Research: Nanoparticle-Enabled Mechanisms for Growth Control in Immiscible Alloys under Regular Cooling
合作研究:常规冷却下不混溶合金生长控制的纳米颗粒机制
  • 批准号:
    1562543
  • 财政年份:
    2016
  • 资助金额:
    $ 49万
  • 项目类别:
    Standard Grant
Multiplexing Enabled Ultrabright Surface-Enhanced Raman Spectroscopy Active Alloyed-Nanoparticle Based Probes
基于活性合金纳米粒子的多路复用超亮表面增强拉曼光谱探针
  • 批准号:
    464873-2014
  • 财政年份:
    2014
  • 资助金额:
    $ 49万
  • 项目类别:
    Alexander Graham Bell Canada Graduate Scholarships - Master's
Nanoparticle Enabled L-asparaginase Therapy for CLL
纳米颗粒 L-天冬酰胺酶治疗 CLL
  • 批准号:
    8583809
  • 财政年份:
    2013
  • 资助金额:
    $ 49万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了