CDS&E: Machine learning enabled modelling of dynamic nanoparticle catalysts

CDS

基本信息

  • 批准号:
    2152767
  • 负责人:
  • 金额:
    $ 36.43万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2022
  • 资助国家:
    美国
  • 起止时间:
    2022-09-01 至 2025-08-31
  • 项目状态:
    未结题

项目摘要

Catalysis enables chemical and fuels manufacturing by promoting efficient energy and resource utilization. As widely practiced in industry, catalysis is an inherently complex process, which has led to heavy reliance on trial-and-error methods for catalyst discovery and optimization. Advances in computational and data science methods are seeing increasing application in catalyst discovery and design. The project extends those methods to a range of catalyst particle sizes that are common in both industrial and environmental applications, yet challenging to simulate because of 1) the large number of atoms which must be modeled, 2) the “massive” combinatorial space of their structural configurations, and 3) dynamical changes in structure that occur in response to changes in reaction conditions. In contrast to previous modeling approaches that treat small particles as static, perfect polyhedrons, the project develops methods that consider the effects of dynamic rearrangements and metastable structures on dehydrogenation and hydrogenolysis reactions as catalyzed by platinum and nickel nanoparticles containing 20 to 200 atoms. To that end, the project employs several novel data science methods to model the vast computational space needed to predict relationships between dynamic catalyst structures and chemical reactivity. Beyond the technical aspect, the project offers educational and outreach activities focused on underrepresented students at the undergraduate and high-school levels.The project is built on the hypothesis that a transition metal nanoparticle, for example based on Pt or Ni, presents several low energy metastable isomers, representing accessible “defect-type” structures, that might fully dominate the catalytic activity of the particle. The main difficulty for atomistic modelling of metallic nanoparticles is the massive combinatorial space of their structural configurations. Those challenges will be addressed by exploiting data science methods leading to generalized models linking the structure and reactivity of nanoparticles in dynamical situations. Data science methods will be used at two places in the project, 1) interatomic potential fitting, and 2) identification of structural motifs on nanoparticle surfaces. The first step involves generation of an accurate inter-atomic potential using Neural Networks based on the investigator’s previous experience modeling small clusters. The various configurations of the surface atoms on the nanoparticle will be explored using basin-hoping algorithms, in a grand canonical approach to handle a variable number of adsorbates. This will allow us to efficiently explore the extremely diverse structures for Pt and Ni particles of ~20-200 atoms, with realistic adsorbate coverage. The obtained large structure database will be used to extract local structure descriptors and learn the statistical distribution of local structural motifs, using pattern recognition algorithms. This distribution of local motifs is key to analyze the catalytic activity. The educational and outreach aspects involve partnering with the UCLA Center for Excellence in Engineering and Diversity (CEED) to involve both high-school and undergraduate URM students in the research. A second initiative features a one-day workshop for high-school teachers on the UCLA campus, targeting Latino schools in central Los Angeles. The program will illustrate how computational chemistry can provide key insights on how catalysts work at the atomic scale.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
催化通过促进有效的能源和资源利用使化学和燃料制造成为可能。 正如在工业中广泛实践的那样,催化是一个固有的复杂过程,这导致严重依赖试错法来发现和优化催化剂。 计算和数据科学方法的进步在催化剂发现和设计中的应用越来越多。 该项目将这些方法扩展到工业和环境应用中常见的一系列催化剂颗粒尺寸,但模拟具有挑战性,因为1)必须建模的大量原子,2)其结构配置的“大规模”组合空间,以及3)响应反应条件变化而发生的结构动态变化。 与以前将小颗粒视为静态完美多面体的建模方法相反,该项目开发了考虑动态重排和亚稳结构对脱氢和氢解反应的影响的方法,这些反应由含有20至200个原子的铂和镍纳米颗粒催化。 为此,该项目采用了几种新的数据科学方法来模拟预测动态催化剂结构和化学反应性之间关系所需的巨大计算空间。 除了技术方面,该项目还提供教育和推广活动,重点关注本科和高中阶段代表性不足的学生。该项目建立在这样一种假设之上:过渡金属纳米颗粒,例如基于Pt或Ni的纳米颗粒,呈现出几种低能亚稳异构体,代表着可接近的“缺陷型”结构,可能完全主导颗粒的催化活性。金属纳米粒子的原子模型的主要困难是其结构配置的大规模组合空间。这些挑战将通过利用数据科学方法来解决,这些方法将导致在动态情况下将纳米颗粒的结构和反应性联系起来的通用模型。 数据科学方法将用于该项目的两个地方,1)原子间势拟合,2)识别纳米颗粒表面的结构基序。 第一步涉及使用神经网络生成精确的原子间势,该神经网络基于研究者先前对小簇建模的经验。纳米颗粒表面原子的各种配置将使用希望盆地算法进行探索,以巨正则方法处理可变数量的吸附物。这将使我们能够有效地探索约20-200个原子的Pt和Ni颗粒的极其多样化的结构,并具有真实的吸附物覆盖范围。所获得的大型结构数据库将用于提取局部结构描述符,并使用模式识别算法学习局部结构基序的统计分布。局部基序的这种分布是分析催化活性的关键。 教育和推广方面涉及与加州大学洛杉矶分校卓越工程和多样性中心(CEED)合作,让高中和本科URM学生参与研究。 第二项举措是在加州大学洛杉矶分校校园为高中教师举办为期一天的讲习班,目标是洛杉矶中部的拉丁美洲学校。该计划将说明计算化学如何提供关于催化剂在原子尺度上如何工作的关键见解。该奖项反映了NSF的法定使命,并通过使用基金会的知识价值和更广泛的影响审查标准进行评估,被认为值得支持。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Philippe Sautet其他文献

On the origin of carbon sources in the electrochemical upgrade of COsub2/sub from carbon capture solutions
关于从碳捕获溶液中电化学升级二氧化碳的碳源起源
  • DOI:
    10.1016/j.joule.2023.05.010
  • 发表时间:
    2023-06-21
  • 期刊:
  • 影响因子:
    35.400
  • 作者:
    Kangze Shen;Dongfang Cheng;Eber Reyes-Lopez;Joonbaek Jang;Philippe Sautet;Carlos G. Morales-Guio
  • 通讯作者:
    Carlos G. Morales-Guio
Key Role of Anionic Doping for H2 Production from Formic Acid onPd(111)
阴离子掺杂在 Pd(111) 上甲酸制氢中的关键作用
  • DOI:
    10.1021/acscatal.6b03544
  • 发表时间:
    2017
  • 期刊:
  • 影响因子:
    12.9
  • 作者:
    Pei Wang;Stephan N. Steinmann;Gang Fu;Carine Michel;Philippe Sautet
  • 通讯作者:
    Philippe Sautet
Determination of the crotonaldehyde structures on Pt and PtSn surface alloys from a combined experimental and theoretical study
  • DOI:
    10.1016/j.cplett.2006.10.123
  • 发表时间:
    2006-12-29
  • 期刊:
  • 影响因子:
  • 作者:
    Jan Haubrich;David Loffreda;Françoise Delbecq;Yvette Jugnet;Philippe Sautet;Aleksander Krupski;Conrad Becker;Klaus Wandelt
  • 通讯作者:
    Klaus Wandelt
Structure Sensitivity and Catalyst Restructuring for CO2 Electro-reduction on Copper
铜上二氧化碳电还原的结构敏感性和催化剂重构
  • DOI:
    10.1038/s41467-025-59267-3
  • 发表时间:
    2025-04-30
  • 期刊:
  • 影响因子:
    15.700
  • 作者:
    Dongfang Cheng;Khanh-Ly C. Nguyen;Vaidish Sumaria;Ziyang Wei;Zisheng Zhang;Winston Gee;Yichen Li;Carlos G. Morales-Guio;Markus Heyde;Beatriz Roldan Cuenya;Anastassia N. Alexandrova;Philippe Sautet
  • 通讯作者:
    Philippe Sautet
First Principles Study of Aluminum Doped Polycrystalline Silicon as a Potential Anode Candidate in Li‐ion Batteries
铝掺杂多晶硅作为锂离子电池潜在负极候选物的第一性原理研究
  • DOI:
    10.1002/aenm.202400924
  • 发表时间:
    2024
  • 期刊:
  • 影响因子:
    27.8
  • 作者:
    Sree Harsha Bhimineni;Shu;Casey Cornwell;Yantao Xia;Sarah H. Tolbert;Jian Luo;Philippe Sautet
  • 通讯作者:
    Philippe Sautet

Philippe Sautet的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Philippe Sautet', 18)}}的其他基金

DMREF: Design of fast energy storage pseudocapacitive materials
DMREF:快速储能赝电容材料的设计
  • 批准号:
    2324326
  • 财政年份:
    2023
  • 资助金额:
    $ 36.43万
  • 项目类别:
    Standard Grant
Self-limited etching for atomic scale surface engineering of metals: understanding and design
金属原子级表面工程的自限蚀刻:理解和设计
  • 批准号:
    2212981
  • 财政年份:
    2022
  • 资助金额:
    $ 36.43万
  • 项目类别:
    Standard Grant
NSF-DFG Echem: CAS: Electrochemical Pyrrolidone Synthesis: An Integrated Experimental and Theoretical Investigation of the Electrochemical Amination of Levulinic Acid (ElectroPyr)
NSF-DFG Echem:CAS:电化学吡咯烷酮合成:乙酰丙酸 (ElectroPyr) 电化学胺化的综合实验和理论研究
  • 批准号:
    2140374
  • 财政年份:
    2022
  • 资助金额:
    $ 36.43万
  • 项目类别:
    Standard Grant
Modeling electrocatalysts in operating conditions: Surface restructuring and catalytic activity
模拟运行条件下的电催化剂:表面重组和催化活性
  • 批准号:
    2103116
  • 财政年份:
    2021
  • 资助金额:
    $ 36.43万
  • 项目类别:
    Standard Grant
Understanding the restructuring of model metal catalysts in reactant gases
了解反应气体中模型金属催化剂的重组
  • 批准号:
    1800601
  • 财政年份:
    2018
  • 资助金额:
    $ 36.43万
  • 项目类别:
    Standard Grant

相似国自然基金

Understanding structural evolution of galaxies with machine learning
  • 批准号:
  • 批准年份:
    2022
  • 资助金额:
    10.0 万元
  • 项目类别:
    省市级项目

相似海外基金

TRUST2 - Improving TRUST in artificial intelligence and machine learning for critical building management
TRUST2 - 提高关键建筑管理的人工智能和机器学习的信任度
  • 批准号:
    10093095
  • 财政年份:
    2024
  • 资助金额:
    $ 36.43万
  • 项目类别:
    Collaborative R&D
Quantum Machine Learning for Financial Data Streams
金融数据流的量子机器学习
  • 批准号:
    10073285
  • 财政年份:
    2024
  • 资助金额:
    $ 36.43万
  • 项目类别:
    Feasibility Studies
Explainable machine learning for electrification of everything
可解释的机器学习,实现万物电气化
  • 批准号:
    LP230100439
  • 财政年份:
    2024
  • 资助金额:
    $ 36.43万
  • 项目类别:
    Linkage Projects
DMS-EPSRC: Asymptotic Analysis of Online Training Algorithms in Machine Learning: Recurrent, Graphical, and Deep Neural Networks
DMS-EPSRC:机器学习中在线训练算法的渐近分析:循环、图形和深度神经网络
  • 批准号:
    EP/Y029089/1
  • 财政年份:
    2024
  • 资助金额:
    $ 36.43万
  • 项目类别:
    Research Grant
Machine Learning for Computational Water Treatment
用于计算水处理的机器学习
  • 批准号:
    EP/X033244/1
  • 财政年份:
    2024
  • 资助金额:
    $ 36.43万
  • 项目类别:
    Research Grant
Postdoctoral Fellowship: OPP-PRF: Leveraging Community Structure Data and Machine Learning Techniques to Improve Microbial Functional Diversity in an Arctic Ocean Ecosystem Model
博士后奖学金:OPP-PRF:利用群落结构数据和机器学习技术改善北冰洋生态系统模型中的微生物功能多样性
  • 批准号:
    2317681
  • 财政年份:
    2024
  • 资助金额:
    $ 36.43万
  • 项目类别:
    Standard Grant
RII Track-4:NSF: Physics-Informed Machine Learning with Organ-on-a-Chip Data for an In-Depth Understanding of Disease Progression and Drug Delivery Dynamics
RII Track-4:NSF:利用器官芯片数据进行物理信息机器学习,深入了解疾病进展和药物输送动力学
  • 批准号:
    2327473
  • 财政年份:
    2024
  • 资助金额:
    $ 36.43万
  • 项目类别:
    Standard Grant
CAREER: Blessing of Nonconvexity in Machine Learning - Landscape Analysis and Efficient Algorithms
职业:机器学习中非凸性的祝福 - 景观分析和高效算法
  • 批准号:
    2337776
  • 财政年份:
    2024
  • 资助金额:
    $ 36.43万
  • 项目类别:
    Continuing Grant
CC* Campus Compute: UTEP Cyberinfrastructure for Scientific and Machine Learning Applications
CC* 校园计算:用于科学和机器学习应用的 UTEP 网络基础设施
  • 批准号:
    2346717
  • 财政年份:
    2024
  • 资助金额:
    $ 36.43万
  • 项目类别:
    Standard Grant
Learning to create Intelligent Solutions with Machine Learning and Computer Vision: A Pathway to AI Careers for Diverse High School Students
学习利用机器学习和计算机视觉创建智能解决方案:多元化高中生的人工智能职业之路
  • 批准号:
    2342574
  • 财政年份:
    2024
  • 资助金额:
    $ 36.43万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了