New Directions in Active Contours by Reformulating Geometric Gradients
通过重新制定几何梯度来实现主动轮廓的新方向
基本信息
- 批准号:0728911
- 负责人:
- 金额:$ 25.02万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2007
- 资助国家:美国
- 起止时间:2007-09-01 至 2011-12-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Active contours (deformable curves that evolve within an image in order to capture an object of interest) rank among the most widely used tools in image processing and computer vision. This investigation focuses on the mathematical reformulation of many existing active contour models to improve their robustness and performance as well as the formulation of brand new active contour models that are not possible under the more traditional formulation. The impact of the this investigation is therefore expected to be quite broad given the prominence of active contour applications in many fields ranging from medical imaging, manufacturing, survelliance, target tracking, visual inspection, and video compression.For over twenty years, gradient flow schemes for active contours have been mathematically founded upon a common, though often overlooked, geometric L2 norm. The investigator will study the benefits of changing this fundamental unifying mathematical foundation by proposing alternative classes of norms to greatly improve the behavior of gradient flow schemes for active contours.A tremendous amount of effort has gone into designing more and more sophisticated energy functionals yet not into considering the mathematical foundations behind the "standard recipe" gradient flow calculations.By changing the underlying norm behind gradient descent caluclations for active contours, the investigator will introduce in a mathematically rigorous and principled manner new active contour flows whose behaviors can be improved and tailored regardless of the corresponding energy functional.
活动轮廓(在图像中演化以捕获感兴趣对象的可变形曲线)是图像处理和计算机视觉中使用最广泛的工具之一。这项调查的重点是许多现有的活动轮廓模型的数学重新制定,以提高其鲁棒性和性能,以及制定全新的活动轮廓模型,是不可能在更传统的制定。由于活动轮廓线在医学成像、制造、监视、目标跟踪、视觉检测和视频压缩等领域的重要应用,这项研究的影响将是相当广泛的。二十多年来,活动轮廓线的梯度流算法在数学上建立在一个共同的、但经常被忽视的几何L2范数基础上。研究者将通过提出替代的范数类来研究改变这一基本的统一数学基础的好处,以大大改善主动轮廓梯度流格式的行为。大量的努力已经投入到设计越来越复杂的能量泛函中,而没有考虑“标准配方”背后的数学基础。梯度流计算。通过改变活动轮廓的梯度下降计算背后的基本规范,研究人员将以数学上严格和有原则的方式引入新的活动轮廓流,这些活动轮廓流的行为可以被改进和定制,而不管相应的能量如何不降低
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Anthony Yezzi其他文献
A Variational Surface-Evolution Approach to Optimal Transport over Transitioning Compact Supports with Domain Constraints
具有域约束的过渡紧支撑上的最优输运的变分表面演化方法
- DOI:
10.3390/fluids9050118 - 发表时间:
2024 - 期刊:
- 影响因子:1.9
- 作者:
Anthony Yezzi - 通讯作者:
Anthony Yezzi
A New Implicit Method for Surface Segmentation by Minimal Paths in 3D Images
- DOI:
10.1007/s00245-006-0885-y - 发表时间:
2007-03-01 - 期刊:
- 影响因子:1.700
- 作者:
Roberto Ardon;Laurent D. Cohen;Anthony Yezzi - 通讯作者:
Anthony Yezzi
Visual Tracking and Object Recognition
- DOI:
10.1016/s1474-6670(17)35408-3 - 发表时间:
2001-07-01 - 期刊:
- 影响因子:
- 作者:
Allen Tannenbaum;Anthony Yezzi;Alex Goldstein - 通讯作者:
Alex Goldstein
Features for Active Contour and Surface Segmentation: A Review
- DOI:
10.1007/s11831-025-10300-0 - 发表时间:
2025-06-12 - 期刊:
- 影响因子:12.100
- 作者:
Rosario Corso;Farhan Khan;Anthony Yezzi;Albert Comelli - 通讯作者:
Albert Comelli
Harmonic Embeddings for Linear Shape Analysis
- DOI:
10.1007/s10851-006-7249-8 - 发表时间:
2006-10-09 - 期刊:
- 影响因子:1.500
- 作者:
Alessandro Duci;Anthony Yezzi;Stefano Soatto;Kelvin Rocha - 通讯作者:
Kelvin Rocha
Anthony Yezzi的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Anthony Yezzi', 18)}}的其他基金
CIF: Small: Geometric, Variational Algorithms for Radiometric-Based Shape Reconstruction
CIF:小:基于辐射的形状重建的几何变分算法
- 批准号:
1526848 - 财政年份:2015
- 资助金额:
$ 25.02万 - 项目类别:
Standard Grant
Shape Based Tomographic Inversion for Maximal Geometric Resolution
基于形状的层析成像反演以获得最大几何分辨率
- 批准号:
1347191 - 财政年份:2013
- 资助金额:
$ 25.02万 - 项目类别:
Standard Grant
I-Corps: A Clinician's Segmentation/Registration Tool
I-Corps:临床医生的细分/注册工具
- 批准号:
1265342 - 财政年份:2012
- 资助金额:
$ 25.02万 - 项目类别:
Standard Grant
CAREER: Unifying Segmentation and Other Image Processing Problems via Variational PDE's
职业:通过变分偏微分方程统一分割和其他图像处理问题
- 批准号:
0133736 - 财政年份:2002
- 资助金额:
$ 25.02万 - 项目类别:
Continuing Grant
相似海外基金
New directions in piezoelectric phononic integrated circuits: exploiting field confinement (SOUNDMASTER)
压电声子集成电路的新方向:利用场限制(SOUNDMASTER)
- 批准号:
EP/Z000688/1 - 财政年份:2024
- 资助金额:
$ 25.02万 - 项目类别:
Research Grant
Collaborative Research: On New Directions for the Derivation of Wave Kinetic Equations
合作研究:波动力学方程推导的新方向
- 批准号:
2306378 - 财政年份:2024
- 资助金额:
$ 25.02万 - 项目类别:
Standard Grant
Collaborative Research: AF: Small: New Directions in Algorithmic Replicability
合作研究:AF:小:算法可复制性的新方向
- 批准号:
2342244 - 财政年份:2024
- 资助金额:
$ 25.02万 - 项目类别:
Standard Grant
Collaborative Research: AF: Small: New Directions in Algorithmic Replicability
合作研究:AF:小:算法可复制性的新方向
- 批准号:
2342245 - 财政年份:2024
- 资助金额:
$ 25.02万 - 项目类别:
Standard Grant
Manchester Metropolitan University and Future Directions CIC KTP 23_24 R3
曼彻斯特城市大学和未来方向 CIC KTP 23_24 R3
- 批准号:
10083223 - 财政年份:2024
- 资助金额:
$ 25.02万 - 项目类别:
Knowledge Transfer Network
Conference: Future Directions for Mathematics Education Research, Policy, and Practice
会议:数学教育研究、政策和实践的未来方向
- 批准号:
2342550 - 财政年份:2024
- 资助金额:
$ 25.02万 - 项目类别:
Standard Grant
Collaborative Research: On New Directions for the Derivation of Wave Kinetic Equations
合作研究:波动力学方程推导的新方向
- 批准号:
2306379 - 财政年份:2024
- 资助金额:
$ 25.02万 - 项目类别:
Standard Grant
CAREER: New directions in the study of zeros and moments of L-functions
职业:L 函数零点和矩研究的新方向
- 批准号:
2339274 - 财政年份:2024
- 资助金额:
$ 25.02万 - 项目类别:
Continuing Grant
Participant Support for Biomechanists Outlining New Directions Workshop (USA and Italy: BOND); Naples, Italy; 24-27 September 2023
生物力学专家概述新方向研讨会的参与者支持(美国和意大利:BOND);
- 批准号:
2314385 - 财政年份:2023
- 资助金额:
$ 25.02万 - 项目类别:
Standard Grant
Collaborative Research: AF: Small: New Directions and Approaches in Discrepancy Theory
合作研究:AF:小:差异理论的新方向和方法
- 批准号:
2327010 - 财政年份:2023
- 资助金额:
$ 25.02万 - 项目类别:
Standard Grant














{{item.name}}会员




