New directions in piezoelectric phononic integrated circuits: exploiting field confinement (SOUNDMASTER)

压电声子集成电路的新方向:利用场限制(SOUNDMASTER)

基本信息

  • 批准号:
    EP/Z000688/1
  • 负责人:
  • 金额:
    $ 266.88万
  • 依托单位:
  • 依托单位国家:
    英国
  • 项目类别:
    Research Grant
  • 财政年份:
    2024
  • 资助国家:
    英国
  • 起止时间:
    2024 至 无数据
  • 项目状态:
    未结题

项目摘要

The analogy between manipulating light and gigahertz (GHz) frequency acoustic waves in chip-scale platforms has been extensively explored, with ideas from silicon photonics, mainly strong geometric confinement and routing, being applied to acoustic waves to develop phononic integrated circuits (PnICs). It is important to note that while the light-sound analogy is generally applied to the strain field, acoustic waves in piezoelectric materials have a co-propagating electromagnetic (EM) field as well. This EM field, which oscillates at GHz frequencies, but is confined to acoustic wavelengths (~10^5 smaller), underpins the dominance of piezoelectric resonators and filters in radio frequency (RF) devices. Despite the advances made in PnICs in the past decade, the majority of piezoelectric devices, both bulk and surface wave based, still rely on weak transverse confinement and manipulation of quasi plane acoustic waves.This project seeks to answer the question: if one could actively control and manipulate these co-propagating EM fields in waveguide geometries with strong transverse confinement, what qualitatively new sensing and information processing paradigms can one enable?We show that by exploiting strong field enhancement in a PnIC platform, one can design resonant magnetic near field generators for electron spin resonance experiments that can improve the spin detection sensitivity by ~10^7, down to the thermal noise limit. In addition, by engineering acousto-electric interactions in waveguide geometries, acoustic phase shifters and mode-selective, non-reciprocal amplifiers can be realized that exert active control on acoustic wave propagation, and push active passive device integration to its limit, enabling a new class of devices for RF signal processing. To ensure these devices perform as expected, we also address the important question: can we get GHz frequency acoustic waves into and out of micrometre-scale devices with near-unity efficiency?
在芯片级平台中操纵光和千兆赫(GHz)频率声波之间的类比已经被广泛探索,硅光子学的想法被应用到声波中,主要是强几何约束和路径选择,以开发声子集成电路(PnIC)。值得注意的是,虽然光-声类比通常应用于应变场,但压电材料中的声波也具有同向传播的电磁(EM)场。这种电磁场在GHz频率下振荡,但仅限于声学波长(~10^5小),支持了压电谐振器和滤波器在射频设备中的主导地位。尽管在过去的十年里,PnIC取得了很大的进步,但大多数基于体波和表面波的压电器件仍然依赖于弱横向约束和准平面声波的操纵。本项目旨在回答这样一个问题:如果人们能够主动地控制和操纵具有强横向约束的波导几何结构中的这些同向传播的电磁场,那么可以实现哪些质的新的传感和信息处理范例?我们表明,通过利用PnIC平台的强场增强,人们可以设计用于电子自旋共振实验的共振磁近场发生器,可以将自旋探测灵敏度提高约10^7,直到热噪声极限。此外,通过在波导几何结构、声移相器和模式选择放大器中设计声电相互作用,可以实现对声波传播施加主动控制的非互易放大器,并将主动无源设备集成推向极限,从而实现了一种新型的射频信号处理设备。为了确保这些设备按预期运行,我们还解决了一个重要的问题:我们能否以接近单位的效率将GHz频率的声波传入和传出微米级的设备?

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Krishna Coimbatore Balram其他文献

Krishna Coimbatore Balram的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Krishna Coimbatore Balram', 18)}}的其他基金

ECCS-EPSRC Micromechanical Elements for Photonic Reconfigurable Zero-Static-Power Modules
用于光子可重构零静态功率模块的 ECCS-EPSRC 微机械元件
  • 批准号:
    EP/X025381/1
  • 财政年份:
    2024
  • 资助金额:
    $ 266.88万
  • 项目类别:
    Research Grant
Next generation Acoustic Wave Filter Platform
下一代声波滤波器平台
  • 批准号:
    EP/W035359/1
  • 财政年份:
    2023
  • 资助金额:
    $ 266.88万
  • 项目类别:
    Research Grant
QC:SCALE - Quantum Circuits: Systematically Controlling And Linking Emitters for integrated solid state photonics platforms
QC:SCALE - 量子电路:系统地控制和链接集成固态光子平台的发射器
  • 批准号:
    EP/W006685/1
  • 财政年份:
    2022
  • 资助金额:
    $ 266.88万
  • 项目类别:
    Research Grant
Guiding, Localizing and IMaging confined GHz acoustic waves in GaN Elastic waveguides and Resonators for monolithically integrated RF front-ends
用于单片集成射频前端的 GaN 弹性波导和谐振器中的有限 GHz 声波的引导、定位和成像
  • 批准号:
    EP/V005286/1
  • 财政年份:
    2021
  • 资助金额:
    $ 266.88万
  • 项目类别:
    Research Grant
GASP: Gallium Arsenide (III-V) photonic integrated circuits built like Silicon Photonics
GASP:砷化镓 (III-V) 光子集成电路,类似于硅光子学
  • 批准号:
    EP/V052179/1
  • 财政年份:
    2021
  • 资助金额:
    $ 266.88万
  • 项目类别:
    Research Grant
SCREAM: Synthesizing and Controlling Resonant Electric and Magnetic near fields using piezoelectric micro-resonators
SCREAM:使用压电微谐振器合成和控制谐振电和磁近场
  • 批准号:
    EP/V048856/1
  • 财政年份:
    2021
  • 资助金额:
    $ 266.88万
  • 项目类别:
    Research Grant

相似海外基金

Collaborative Research: AF: Small: New Directions in Algorithmic Replicability
合作研究:AF:小:算法可复制性的新方向
  • 批准号:
    2342244
  • 财政年份:
    2024
  • 资助金额:
    $ 266.88万
  • 项目类别:
    Standard Grant
Collaborative Research: On New Directions for the Derivation of Wave Kinetic Equations
合作研究:波动力学方程推导的新方向
  • 批准号:
    2306378
  • 财政年份:
    2024
  • 资助金额:
    $ 266.88万
  • 项目类别:
    Standard Grant
Collaborative Research: AF: Small: New Directions in Algorithmic Replicability
合作研究:AF:小:算法可复制性的新方向
  • 批准号:
    2342245
  • 财政年份:
    2024
  • 资助金额:
    $ 266.88万
  • 项目类别:
    Standard Grant
Manchester Metropolitan University and Future Directions CIC KTP 23_24 R3
曼彻斯特城市大学和未来方向 CIC KTP 23_24 R3
  • 批准号:
    10083223
  • 财政年份:
    2024
  • 资助金额:
    $ 266.88万
  • 项目类别:
    Knowledge Transfer Network
Conference: Future Directions for Mathematics Education Research, Policy, and Practice
会议:数学教育研究、政策和实践的未来方向
  • 批准号:
    2342550
  • 财政年份:
    2024
  • 资助金额:
    $ 266.88万
  • 项目类别:
    Standard Grant
Collaborative Research: On New Directions for the Derivation of Wave Kinetic Equations
合作研究:波动力学方程推导的新方向
  • 批准号:
    2306379
  • 财政年份:
    2024
  • 资助金额:
    $ 266.88万
  • 项目类别:
    Standard Grant
CAREER: New directions in the study of zeros and moments of L-functions
职业:L 函数零点和矩研究的新方向
  • 批准号:
    2339274
  • 财政年份:
    2024
  • 资助金额:
    $ 266.88万
  • 项目类别:
    Continuing Grant
Participant Support for Biomechanists Outlining New Directions Workshop (USA and Italy: BOND); Naples, Italy; 24-27 September 2023
生物力学专家概述新方向研讨会的参与者支持(美国和意大利:BOND);
  • 批准号:
    2314385
  • 财政年份:
    2023
  • 资助金额:
    $ 266.88万
  • 项目类别:
    Standard Grant
Collaborative Research: AF: Small: New Directions and Approaches in Discrepancy Theory
合作研究:AF:小:差异理论的新方向和方法
  • 批准号:
    2327010
  • 财政年份:
    2023
  • 资助金额:
    $ 266.88万
  • 项目类别:
    Standard Grant
Collaborative Research: AF: Small: New Directions and Approaches in Discrepancy Theory
合作研究:AF:小:差异理论的新方向和方法
  • 批准号:
    2327011
  • 财政年份:
    2023
  • 资助金额:
    $ 266.88万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了