Complete Adaptive Algorithms for Curves and Surfaces and their Complexity
曲线和曲面及其复杂性的完整自适应算法
基本信息
- 批准号:0728977
- 负责人:
- 金额:--
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2007
- 资助国家:美国
- 起止时间:2007-09-01 至 2010-08-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Computational problems of curves and surfaces arise in many applications, including geometric modeling, graphics and visualization, engineering design and simulations. Most computational approaches to curves and surfaces fall under one of two viewpoints, called the Algebraic Approach and the Geometric Approach (respectively). The former approach leads to exact and complete algorithms, but these are usually inefficient and hard to implement. In the Geometric Approach, one avoids powerful algebraic techniques, in favor of numerical and simple subdivision methods. These are easier to implement, but more importantly, their complexity is adaptive, meaning that the complexity strongly depends on the input instances. Moreover, input instances with high complexity are atypical. For these reasons, most implementors prefer the Geometric Approach. Unfortunately, geometric algorithms are usually nonrobust, incomplete and have no guaranteed topological properties. Indeed, achieving robust geometric algorithms for curves and surfaces is widely viewed as the major open problem of geometric modeling. Recently, some robust adaptive algorithms for meshing curves and surfaces have been proposed, but some non-degeneracy conditions (e.g., non-singularity) remain.This research addresses several basic problems within the Geometric Approach, including the intersection of curves and surfaces, and meshing of implicit surfaces. The achieved results represent two fundamental advances in the theory of algorithms: (1) For the first time, complete and fully adaptive algorithms for such problems have been constructed. The key to such algorithms is the judicious application of zero bounds, or their geometric analogues. (2) The complexity analysis of some adaptive algorithms for meshing is initiated. The analysis introduces novel amortization arguments, and suitable concepts of precision-sensitivity. This represents a new frontier in the analysis of algorithms. Both advances build upon the principal investigator's prior work in Exact Geometric Computation, and in the implementation of the open-source Core Library software. The new adaptive algorithms are validated via implementation in Core Library.
曲线曲面的计算问题在几何造型、图形学与可视化、工程设计与仿真等领域有着广泛的应用。 大多数曲线和曲面的计算方法都属于两种观点之一,分别称为代数方法和几何方法。 前一种方法导致精确和完整的算法,但这些通常是低效的,难以实现。 在几何方法中,避免了强大的代数技术,有利于数值和简单的细分方法。 这些更容易实现,但更重要的是,它们的复杂性是自适应的,这意味着复杂性很大程度上取决于输入实例。 此外,具有高复杂度的输入实例是非典型的。 由于这些原因,大多数实现者更喜欢几何方法。 不幸的是,几何算法通常是非鲁棒的,不完整的,没有保证的拓扑性质。 实际上,实现曲线和曲面的鲁棒几何算法被广泛认为是几何建模的主要开放问题。 近年来,人们提出了一些曲线曲面网格化的鲁棒自适应算法,但其中一些非退化条件(如,本文主要研究几何方法中的几个基本问题,包括曲线曲面的求交和隐式曲面的网格划分。 所取得的成果代表了算法理论的两个基本进展:(1)第一次,完整的和完全自适应的算法,这类问题已经被构造。 这种算法的关键是明智地应用零边界,或其几何类似物。 (2)对网格划分的自适应算法进行了复杂性分析。 分析介绍了新的摊销参数,和适当的概念,精度敏感性。 这代表了算法分析的一个新领域。 这两项进展都建立在首席研究员先前在精确几何计算方面的工作以及开源核心库软件的实现上。 新的自适应算法通过在核心库中的实现进行了验证。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Chee Yap其他文献
Erratum for “Global Identifiability of Differential Models”
“差分模型的全局可识别性”勘误表
- DOI:
10.1002/cpa.22163 - 发表时间:
2023 - 期刊:
- 影响因子:3
- 作者:
Hoon Hong;A. Ovchinnikov;G. Pogudin;Chee Yap - 通讯作者:
Chee Yap
Chelation effects in the binding of bidentate ligands by a face-to-face zinc porphyrin
面对面锌卟啉与双齿配体结合的螯合效应
- DOI:
10.1039/p19900000421 - 发表时间:
1990 - 期刊:
- 影响因子:0
- 作者:
Ian P. Danks;I. Sutherland;Chee Yap - 通讯作者:
Chee Yap
Pseudo Approximation Algorithms with Applications to Optimal Motion Planning
- DOI:
10.1007/s00454-003-2952-3 - 发表时间:
2003-11-05 - 期刊:
- 影响因子:0.600
- 作者:
Tetsuo Asano;David Kirkpatrick;Chee Yap - 通讯作者:
Chee Yap
Generalized Voronoi diagrams for a ladder: II. Efficient construction of the diagram
- DOI:
10.1007/bf01840348 - 发表时间:
1987-11-01 - 期刊:
- 影响因子:0.700
- 作者:
Colm Ó'Dúnlaing;Micha Sharir;Chee Yap - 通讯作者:
Chee Yap
Shortest paths for line segments
- DOI:
10.1007/bf01891839 - 发表时间:
1993-10-01 - 期刊:
- 影响因子:0.700
- 作者:
Christian Icking;Günter Rote;Emo Welzl;Chee Yap - 通讯作者:
Chee Yap
Chee Yap的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Chee Yap', 18)}}的其他基金
Collaborative Research: CCF: AF: Medium: Validated Soft Approaches to Parametric ODE Solving
协作研究:CCF:AF:中:经过验证的参数 ODE 求解软方法
- 批准号:
2212462 - 财政年份:2022
- 资助金额:
-- - 项目类别:
Continuing Grant
Collaborative Research: Efficient Methods for Identifiability of Dynamic Models
协作研究:动态模型可识别性的有效方法
- 批准号:
1853482 - 财政年份:2019
- 资助金额:
-- - 项目类别:
Standard Grant
AF: Medium: Collaborative Research:Numerical Algebraic Differential Equations
AF:媒介:协作研究:数值代数微分方程
- 批准号:
1564132 - 财政年份:2016
- 资助金额:
-- - 项目类别:
Continuing Grant
AF: Small: Numeric-Symbolic Techniques for Geometric Problems in Algebra and Analysis
AF:小:代数和分析中几何问题的数值符号技术
- 批准号:
1423228 - 财政年份:2014
- 资助金额:
-- - 项目类别:
Standard Grant
AF: Small: Analysis Algorithms: Continuous and Algebraic Amortization
AF:小:分析算法:连续和代数摊销
- 批准号:
0917093 - 财政年份:2009
- 资助金额:
-- - 项目类别:
Standard Grant
A Theory of Real Approximations, with Applications
实数近似理论及其应用
- 批准号:
0430836 - 财政年份:2004
- 资助金额:
-- - 项目类别:
Continuing Grant
ITR: A New Computational Paradigm: Robustness as a Resource
ITR:新的计算范式:作为资源的鲁棒性
- 批准号:
0082056 - 财政年份:2000
- 资助金额:
-- - 项目类别:
Continuing Grant
Algorithmic Development of Visualization Under Foveated Geometries
焦点几何下可视化的算法开发
- 批准号:
9619846 - 财政年份:1997
- 资助金额:
-- - 项目类别:
Standard Grant
Manufacturing and Computational Geometry Workshop, April l994, New York University
制造和计算几何研讨会,1994 年 4 月,纽约大学
- 批准号:
9400502 - 财政年份:1994
- 资助金额:
-- - 项目类别:
Standard Grant
相似海外基金
Adaptive optimization: parameter-free self-tuning algorithms beyond smoothness and convexity
自适应优化:超越平滑性和凸性的无参数自调整算法
- 批准号:
24K20737 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Grant-in-Aid for Early-Career Scientists
RTML: Large: Collaborative: Harmonizing Predictive Algorithms and Mixed-Signal/Precision Circuits via Computation-Data Access Exchange and Adaptive Dataflows
RTML:大型:协作:通过计算数据访问交换和自适应数据流协调预测算法和混合信号/精密电路
- 批准号:
2400511 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Standard Grant
CAREER: Developing Algorithms for Object-Adaptive Super-Resolution in Biomedical Imaging
职业:开发生物医学成像中对象自适应超分辨率算法
- 批准号:
2239810 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Continuing Grant
Designing Bayesian based Adaptive Resource Constrained Hardware Algorithms for Next Generation of Embedded Systems
为下一代嵌入式系统设计基于贝叶斯的自适应资源受限硬件算法
- 批准号:
2890421 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Studentship
SWIFT: Advancing Coexistence through a Cross-Layer Design Platform with an Adaptive Frequency-Selective Radio Front-End and Digital Algorithms
SWIFT:通过具有自适应选频无线电前端和数字算法的跨层设计平台促进共存
- 批准号:
2229021 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Standard Grant
Adaptive numerical algorithms for PDE problems with random inputs
具有随机输入的偏微分方程问题的自适应数值算法
- 批准号:
2741369 - 财政年份:2022
- 资助金额:
-- - 项目类别:
Studentship
ExpandQISE: Track 1: Reimagining Adaptive Quantum Algorithms
ExpandQISE:轨道 1:重新构想自适应量子算法
- 批准号:
2231328 - 财政年份:2022
- 资助金额:
-- - 项目类别:
Standard Grant
Self-Adaptive, Unstructured Mesh, NURBS Enhanced, Polyhedral Schemes, with Hybrid Multicore CPU and Manycore GPU Solution Algorithms, for Nuclear Reac
适用于核反应堆的自适应、非结构化网格、NURBS 增强型、多面体方案,具有混合多核 CPU 和众核 GPU 解决方案算法
- 批准号:
2738301 - 财政年份:2022
- 资助金额:
-- - 项目类别:
Studentship
Collaborative Research: Algorithms for Optimal Adaptive Enrichment Design in Randomized Trial
协作研究:随机试验中最佳自适应富集设计的算法
- 批准号:
2230795 - 财政年份:2022
- 资助金额:
-- - 项目类别:
Continuing Grant
CNS Core: Medium: Distributed Runtime Dataplane Telemetry as an Adaptive Query Scheduling Problem: Algorithms and Applications
CNS 核心:中:分布式运行时数据平面遥测作为自适应查询调度问题:算法和应用程序
- 批准号:
2212590 - 财政年份:2022
- 资助金额:
-- - 项目类别:
Standard Grant