Robust Inference and Communication: Theory, Algorithms and Performance Analysis
稳健的推理和交流:理论、算法和性能分析
基本信息
- 批准号:0729031
- 负责人:
- 金额:$ 38万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2007
- 资助国家:美国
- 起止时间:2007-10-01 至 2011-09-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Robust Inference and Communication: Theory, Algorithms and Performance Analysis Sean P. Meyn and Venugopal V. VeeravalliAs sensors and wireless communication become increasingly pervasive, and network topologies increasingly complex, there is an urgent need for new techniques for inference and communication in complex environments, as well as techniques to evaluate their performance. The goal of this investigation is to respond to these needs by following two complementary tracks. The first concerns methods for constructing inference and decoding algorithms for complex models, with possible modeling uncertainty, based on the geometry surrounding Kullback-Leibler (K-L) divergence and related methods developed by the investigators in their prior research. The second track treats performance evaluation and performance improvement. Both performance evaluation and algorithm selection are performed using Monte-Carlo or related sample path learning techniques. These approaches are chosen primarily because of their ease of application when compared to deterministic numerical techniques. The application of Monte-Carlo techniques comes at a price in the form of high variance. Efficient simulation and learning techniques are developed in concert with research on hypothesis testing and communication to construct faster algorithms for performance evaluation and adaptation. In addition to theoretical research on these topics, the investigators will transfer technology to industry and community organizations, including the Motorola Communications Center at Illinois, United Technologies Research Center, Vodafone, and the community wireless group CUWiN. Both graduate and undergraduate students will be engaged in applied and theoretical research.
鲁棒推理和通信:理论,算法和性能分析Sean P. Meyn和Venugopal V. Veeravalli随着传感器和无线通信变得越来越普遍,网络拓扑结构越来越复杂,迫切需要在复杂环境中进行推理和通信的新技术,以及评估其性能的技术。 本次调查的目标是通过两个相辅相成的轨道来满足这些需求。第一个关注的方法,为复杂的模型,可能建模的不确定性,周围的Kullback-Leibler(KL)发散和相关的方法,研究人员在他们以前的研究中开发的几何基础上,构建推理和解码算法。第二轨道处理业绩评价和业绩改进。 性能评估和算法选择都使用蒙特-卡罗或相关的样本路径学习技术来执行。 选择这些方法主要是因为它们与确定性数值技术相比易于应用。蒙特-卡罗技术的应用是以高方差形式为代价的。 有效的模拟和学习技术的发展与假设检验和通信的研究,以构建更快的算法的性能评估和适应。除了对这些主题进行理论研究外,研究人员还将向工业和社区组织转让技术,包括伊利诺伊州的摩托罗拉通信中心、联合技术研究中心、沃达丰和社区无线组CUWiN。 研究生和本科生都将从事应用和理论研究。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Sean Meyn其他文献
Coding and control for communication networks
- DOI:
10.1007/s11134-009-9148-3 - 发表时间:
2009-11-25 - 期刊:
- 影响因子:0.700
- 作者:
Wei Chen;Danail Traskov;Michael Heindlmaier;Muriel Médard;Sean Meyn;Asuman Ozdaglar - 通讯作者:
Asuman Ozdaglar
Convex Q-Learning in Continuous Time with Application to Dispatch of Distributed Energy Resources
连续时间凸Q学习在分布式能源调度中的应用
- DOI:
- 发表时间:
2023 - 期刊:
- 影响因子:0
- 作者:
Fan Lu;Joel Mathias;Sean Meyn;Karan Kalsi - 通讯作者:
Karan Kalsi
Revisiting Step-Size Assumptions in Stochastic Approximation
重新审视随机逼近中的步长假设
- DOI:
- 发表时间:
2024 - 期刊:
- 影响因子:0
- 作者:
Caio Kalil Lauand;Sean Meyn - 通讯作者:
Sean Meyn
Balancing the Power Grid with Cheap Assets---Tutorial Lecture
用廉价资产平衡电网---教程讲座
- DOI:
- 发表时间:
2023 - 期刊:
- 影响因子:0
- 作者:
Sean Meyn;Fan Lu;Joel Mathias - 通讯作者:
Joel Mathias
Dynamic Safety-Stocks for Asymptotic Optimality in Stochastic Networks
- DOI:
10.1007/s11134-005-0732-x - 发表时间:
2005-07-01 - 期刊:
- 影响因子:0.700
- 作者:
Sean Meyn - 通讯作者:
Sean Meyn
Sean Meyn的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Sean Meyn', 18)}}的其他基金
CIF: Small: Accelerating Stochastic Approximation for Optimization and Reinforcement Learning
CIF:小型:加速优化和强化学习的随机逼近
- 批准号:
2306023 - 财政年份:2023
- 资助金额:
$ 38万 - 项目类别:
Standard Grant
Characterizing capacity of controllable DERs to provide energy storage service to the power grid
表征可控分布式能源为电网提供储能服务的能力
- 批准号:
2122313 - 财政年份:2021
- 资助金额:
$ 38万 - 项目类别:
Standard Grant
Reinforcement Learning and Kullback-Leibler Stochastic Optimal Control for Complex Networks
复杂网络的强化学习和 Kullback-Leibler 随机最优控制
- 批准号:
1935389 - 财政年份:2019
- 资助金额:
$ 38万 - 项目类别:
Standard Grant
Distributed Control for Demand Dispatch: The Creation of Virtual Energy Storage from Flexible Loads
需求调度的分布式控制:灵活负载创建虚拟储能
- 批准号:
1609131 - 财政年份:2016
- 资助金额:
$ 38万 - 项目类别:
Standard Grant
CPS:Medium:Collaborative Research: Smart Power Systems of the Future: Foundations for Understanding Volatility and Improving Operational Reliability
CPS:中:合作研究:未来的智能电力系统:理解波动性和提高运行可靠性的基础
- 批准号:
1259040 - 财政年份:2012
- 资助金额:
$ 38万 - 项目类别:
Standard Grant
CPS:Medium:Collaborative Research: Smart Power Systems of the Future: Foundations for Understanding Volatility and Improving Operational Reliability
CPS:中:合作研究:未来的智能电力系统:理解波动性和提高运行可靠性的基础
- 批准号:
1135598 - 财政年份:2011
- 资助金额:
$ 38万 - 项目类别:
Standard Grant
Visualization & Optimization Techniques For Analysis and Design of Complex Systems
可视化
- 批准号:
0217836 - 财政年份:2002
- 资助金额:
$ 38万 - 项目类别:
Standard Grant
US-India Workshop: Learning, Adaptation, and Optimization, Kerala, India, December 2000
美印研讨会:学习、适应和优化,印度喀拉拉邦,2000 年 12 月
- 批准号:
0079744 - 财政年份:2000
- 资助金额:
$ 38万 - 项目类别:
Standard Grant
Optimization and Performance Evaluation of Network Models
网络模型的优化和性能评估
- 批准号:
9972957 - 财政年份:1999
- 资助金额:
$ 38万 - 项目类别:
Standard Grant
相似海外基金
CAREER: Game Theoretic Models for Robust Cyber-Physical Interactions: Inference and Design under Uncertainty
职业:稳健的网络物理交互的博弈论模型:不确定性下的推理和设计
- 批准号:
2336840 - 财政年份:2024
- 资助金额:
$ 38万 - 项目类别:
Continuing Grant
Spectral embedding methods and subsequent inference tasks on dynamic multiplex graphs
动态多路复用图上的谱嵌入方法和后续推理任务
- 批准号:
EP/Y002113/1 - 财政年份:2024
- 资助金额:
$ 38万 - 项目类别:
Research Grant
Probabilistic Inference Based Utility Evaluation and Path Generation for Active Autonomous Exploration of USVs in Unknown Confined Marine Environments
基于概率推理的效用评估和路径生成,用于未知受限海洋环境中 USV 主动自主探索
- 批准号:
EP/Y000862/1 - 财政年份:2024
- 资助金额:
$ 38万 - 项目类别:
Research Grant
CAREER: Statistical foundations of particle tracking and trajectory inference
职业:粒子跟踪和轨迹推断的统计基础
- 批准号:
2339829 - 财政年份:2024
- 资助金额:
$ 38万 - 项目类别:
Continuing Grant
Collaborative Research: SHF: Small: Efficient and Scalable Privacy-Preserving Neural Network Inference based on Ciphertext-Ciphertext Fully Homomorphic Encryption
合作研究:SHF:小型:基于密文-密文全同态加密的高效、可扩展的隐私保护神经网络推理
- 批准号:
2412357 - 财政年份:2024
- 资助金额:
$ 38万 - 项目类别:
Standard Grant
CAREER: Efficient Large Language Model Inference Through Codesign: Adaptable Software Partitioning and FPGA-based Distributed Hardware
职业:通过协同设计进行高效的大型语言模型推理:适应性软件分区和基于 FPGA 的分布式硬件
- 批准号:
2339084 - 财政年份:2024
- 资助金额:
$ 38万 - 项目类别:
Continuing Grant
AI4PhotMod - Artificial Intelligence for parameter inference in Photosynthesis Models
AI4PhotMod - 用于光合作用模型中参数推断的人工智能
- 批准号:
BB/Y51388X/1 - 财政年份:2024
- 资助金额:
$ 38万 - 项目类别:
Research Grant
CSR: Small: Latency-controlled Reduction of Data Center Expenses for Handling Bursty ML Inference Requests
CSR:小:通过延迟控制减少数据中心处理突发 ML 推理请求的费用
- 批准号:
2336886 - 财政年份:2024
- 资助金额:
$ 38万 - 项目类别:
Standard Grant
CAREER: Statistical Inference in Observational Studies -- Theory, Methods, and Beyond
职业:观察研究中的统计推断——理论、方法及其他
- 批准号:
2338760 - 财政年份:2024
- 资助金额:
$ 38万 - 项目类别:
Continuing Grant
STATISTICAL AND COMPUTATIONAL THRESHOLDS IN SPIN GLASSES AND GRAPH INFERENCE PROBLEMS
自旋玻璃和图推理问题的统计和计算阈值
- 批准号:
2347177 - 财政年份:2024
- 资助金额:
$ 38万 - 项目类别:
Standard Grant














{{item.name}}会员




