Distributed Control for Demand Dispatch: The Creation of Virtual Energy Storage from Flexible Loads

需求调度的分布式控制:灵活负载创建虚拟储能

基本信息

  • 批准号:
    1609131
  • 负责人:
  • 金额:
    $ 38万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2016
  • 资助国家:
    美国
  • 起止时间:
    2016-07-15 至 2020-12-31
  • 项目状态:
    已结题

项目摘要

Ostensibly free energy from the wind and the sun comes with unwanted volatility, such as ramps with the setting sun or with gusts of wind. Controllable generators have managed supply-demand balance of power in the past, but this is becoming increasingly costly with increasing penetration of renewable energy. It has been argued since the 1980s that consumers should be put in the loop, with the idea that "demand response" can be managed to help to create the needed supply-demand balance. However, consumers use power for a reason, and expect some guarantees on the quality of service (QoS) they receive. For example, the temperature in a building or refrigerator must remain within strict bounds. Moreover, the behavior of some consumers is unpredictable, while the grid operator requires predictable controllable resources to maintain reliability. The goal of this project is to create a science for "demand dispatch," which is virtual energy storage using flexible loads. A major outcome will be the creation of resources for grid regulation that are as reliable and responsive as giant fleets of batteries. By design, the impact to consumers of electricity will be undetectable in many cases; strict bounds on QoS will be maintained in all cases. The potential economic impact of these new resources is enormous. California plans to spend billions of dollars on batteries that will provide only a small fraction of the balancing services that can be obtained using demand dispatch. The potential impact of developing this methodology and associated technology is no less than a sustainable energy future becoming possible with the right mix of infrastructure and control systems.The goal of this project is to create virtual energy storage resources via demand dispatch to be used for grid-level regulation, ramping, peak smoothing, and even recovery from contingencies such as generation faults, while ensuring that QoS to consumers obeys strict constraints. Demand dispatch can only be realized by devising distributed control algorithms that meet multiple, potentially conflicting objectives: the grid needs high quality resources for regulation; the consumer expects that water supply is not interrupted, fish in the refrigerator stays fresh, and the climate within a building remains within desired bounds. The project aims to create a science for demand dispatch based on these essential ingredients:(i) "Local intelligence" is required to ensure local QoS constraints are met, while simultaneously providing reliable service to the grid. This is realized through local stochastic control at each load as part of an overall distributed control architecture. (ii) Capacity of service to the grid is a function of QoS constraints. The nature of these relationships will be investigated in part through the creation of prototype hardware. One outcome of these experiments will be the creation of load simulation code that will be used as part of the project, and shared with others working in this field.(iii) Insight from cost/QoS tradeoff curves will be applied in the creation of market incentives for consumer engagement. Topic (i) presents significant scientific challenges. This will require the development of stochastic control / Markov Decision Process techniques that will be a focus of the project. Analysis is based on related ideas from information theory and extensions of concepts from the theory of general state space Markov models. Grid-level analysis requires concepts from deterministic control theory such as passivity, along with traditional power systems technology. The scientific foundations to be developed have applications beyond power. The proposed computational tools for constructing local optimal policies are novel, and applicable to general classes of stochastic control models. The distributed control architecture is also likely to find applications in many fields.
表面上来自风和太阳的自由能源伴随着不必要的波动性,例如随着夕阳或阵风的斜坡。可控式发电机在过去曾管理过电力供需平衡,但随着可再生能源的普及,这一点的成本越来越高。自20世纪80年代以来,人们一直认为,应该让消费者参与其中,因为他们的想法是,可以管理“需求反应”,以帮助创造所需的供需平衡。然而,消费者使用电力是有原因的,他们希望得到一些服务质量(Qos)的保证。例如,建筑物或冰箱内的温度必须保持在严格的范围内。此外,一些消费者的行为是不可预测的,而电网运营商需要可预测的可控资源来维护可靠性。这个项目的目标是创建一门科学,用于“需求调度”,即使用灵活负载的虚拟能量存储。一个主要结果将是为电网监管创造资源,这些资源就像巨大的电池舰队一样可靠和灵敏。根据设计,电力对消费者的影响在许多情况下都是无法检测到的;在所有情况下都将保持严格的服务质量界限。这些新资源的潜在经济影响是巨大的。加州计划花费数十亿美元购买电池,这些电池只提供一小部分平衡服务,而这些服务可以通过按需调度获得。开发这种方法和相关技术的潜在影响不亚于基础设施和控制系统的正确组合使可持续能源未来成为可能。该项目的目标是通过需求调度创建虚拟能量存储资源,用于电网级别调节、斜坡、高峰平滑,甚至从发电故障等意外情况中恢复,同时确保用户的服务质量遵守严格的限制。需求分配只能通过设计分布式控制算法来实现,以满足多个潜在冲突的目标:电网需要高质量的资源来进行监管;消费者希望供水不中断,冰箱里的鱼保持新鲜,建筑物内的气候保持在所需的范围内。该项目旨在创建基于以下基本要素的需求调度科学:(I)需要“本地智能”,以确保满足本地服务质量限制,同时为电网提供可靠的服务。这是通过在每个负载上的局部随机控制来实现的,作为整个分布式控制体系结构的一部分。(Ii)对网格的服务能力是服务质量约束的函数。这些关系的性质将在一定程度上通过创建原型硬件来调查。这些实验的一个结果将是创建负载模拟代码,该代码将被用作项目的一部分,并与该领域的其他工作人员共享。(Iii)来自成本/服务质量权衡曲线的见解将被应用于创建消费者参与的市场激励。议题(I)提出了重大的科学挑战。这将需要开发随机控制/马尔可夫决策过程技术,这将是该项目的重点。分析基于信息论的相关思想和一般状态空间马尔可夫模型理论的概念扩展。电网水平的分析需要确定性控制理论中的概念,如无源性,以及传统的电力系统技术。有待开发的科学基础具有超越能力的应用。所提出的构造局部最优策略的计算工具是新颖的,适用于一般的随机控制模型。分布式控制体系结构也可能在许多领域得到应用。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Sean Meyn其他文献

Coding and control for communication networks
  • DOI:
    10.1007/s11134-009-9148-3
  • 发表时间:
    2009-11-25
  • 期刊:
  • 影响因子:
    0.700
  • 作者:
    Wei Chen;Danail Traskov;Michael Heindlmaier;Muriel Médard;Sean Meyn;Asuman Ozdaglar
  • 通讯作者:
    Asuman Ozdaglar
Convex Q-Learning in Continuous Time with Application to Dispatch of Distributed Energy Resources
连续时间凸Q学习在分布式能源调度中的应用
Revisiting Step-Size Assumptions in Stochastic Approximation
重新审视随机逼近中的步长假设
  • DOI:
  • 发表时间:
    2024
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Caio Kalil Lauand;Sean Meyn
  • 通讯作者:
    Sean Meyn
Balancing the Power Grid with Cheap Assets---Tutorial Lecture
用廉价资产平衡电网---教程讲座
Dynamic Safety-Stocks for Asymptotic Optimality in Stochastic Networks
  • DOI:
    10.1007/s11134-005-0732-x
  • 发表时间:
    2005-07-01
  • 期刊:
  • 影响因子:
    0.700
  • 作者:
    Sean Meyn
  • 通讯作者:
    Sean Meyn

Sean Meyn的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Sean Meyn', 18)}}的其他基金

CIF: Small: Accelerating Stochastic Approximation for Optimization and Reinforcement Learning
CIF:小型:加速优化和强化学习的随机逼近
  • 批准号:
    2306023
  • 财政年份:
    2023
  • 资助金额:
    $ 38万
  • 项目类别:
    Standard Grant
Characterizing capacity of controllable DERs to provide energy storage service to the power grid
表征可控分布式能源为电网提供储能服务的能力
  • 批准号:
    2122313
  • 财政年份:
    2021
  • 资助金额:
    $ 38万
  • 项目类别:
    Standard Grant
Reinforcement Learning and Kullback-Leibler Stochastic Optimal Control for Complex Networks
复杂网络的强化学习和 Kullback-Leibler 随机最优控制
  • 批准号:
    1935389
  • 财政年份:
    2019
  • 资助金额:
    $ 38万
  • 项目类别:
    Standard Grant
CPS:Medium:Collaborative Research: Smart Power Systems of the Future: Foundations for Understanding Volatility and Improving Operational Reliability
CPS:中:合作研究:未来的智能电力系统:理解波动性和提高运行可靠性的基础
  • 批准号:
    1259040
  • 财政年份:
    2012
  • 资助金额:
    $ 38万
  • 项目类别:
    Standard Grant
CPS:Medium:Collaborative Research: Smart Power Systems of the Future: Foundations for Understanding Volatility and Improving Operational Reliability
CPS:中:合作研究:未来的智能电力系统:理解波动性和提高运行可靠性的基础
  • 批准号:
    1135598
  • 财政年份:
    2011
  • 资助金额:
    $ 38万
  • 项目类别:
    Standard Grant
Robust Inference and Communication: Theory, Algorithms and Performance Analysis
稳健的推理和交流:理论、算法和性能分析
  • 批准号:
    0729031
  • 财政年份:
    2007
  • 资助金额:
    $ 38万
  • 项目类别:
    Standard Grant
Control Techniques for Complex Networks
复杂网络的控制技术
  • 批准号:
    0523620
  • 财政年份:
    2005
  • 资助金额:
    $ 38万
  • 项目类别:
    Standard Grant
Visualization & Optimization Techniques For Analysis and Design of Complex Systems
可视化
  • 批准号:
    0217836
  • 财政年份:
    2002
  • 资助金额:
    $ 38万
  • 项目类别:
    Standard Grant
US-India Workshop: Learning, Adaptation, and Optimization, Kerala, India, December 2000
美印研讨会:学习、适应和优化,印度喀拉拉邦,2000 年 12 月
  • 批准号:
    0079744
  • 财政年份:
    2000
  • 资助金额:
    $ 38万
  • 项目类别:
    Standard Grant
Optimization and Performance Evaluation of Network Models
网络模型的优化和性能评估
  • 批准号:
    9972957
  • 财政年份:
    1999
  • 资助金额:
    $ 38万
  • 项目类别:
    Standard Grant

相似国自然基金

Cortical control of internal state in the insular cortex-claustrum region
  • 批准号:
  • 批准年份:
    2020
  • 资助金额:
    25 万元
  • 项目类别:

相似海外基金

PFI-TT: Smart windows for on-demand control of solar heat and daylight
PFI-TT:用于按需控制太阳热能和日光的智能窗户
  • 批准号:
    2345804
  • 财政年份:
    2024
  • 资助金额:
    $ 38万
  • 项目类别:
    Standard Grant
Demand-supply control of relief goods for humanitarian logistics
人道主义物流救援物资的供需控制
  • 批准号:
    23K13420
  • 财政年份:
    2023
  • 资助金额:
    $ 38万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
CAREER: Laser-Induced Graphene with On-Demand Morphology and Chemistry Control for Scalable Flexible Device Manufacturing
职业:具有按需形态和化学控制的激光诱导石墨烯,用于可扩展的柔性设备制造
  • 批准号:
    2239244
  • 财政年份:
    2023
  • 资助金额:
    $ 38万
  • 项目类别:
    Standard Grant
Development of an On-Demand Photosensitive Wavelength Control Method for Photoacid Generators Based on Complexation with Metals
基于金属络合的光产酸剂按需光敏波长控制方法的开发
  • 批准号:
    21H01977
  • 财政年份:
    2021
  • 资助金额:
    $ 38万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Directed Evolution of Cell-Type Specific On-Demand Signaling Control Systems
细胞类型特定按需信号控制系统的定向进化
  • 批准号:
    10246098
  • 财政年份:
    2021
  • 资助金额:
    $ 38万
  • 项目类别:
Real-time scheduling of trains to control peak electricity demand
列车实时调度控制高峰用电需求
  • 批准号:
    LP210100290
  • 财政年份:
    2021
  • 资助金额:
    $ 38万
  • 项目类别:
    Linkage Projects
Robut Supply and Demand Control Manager for Realizing A Microgrid
用于实现微电网的鲁棒供需控制管理器
  • 批准号:
    21K04002
  • 财政年份:
    2021
  • 资助金额:
    $ 38万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
A Theory of Quantized Control of Demand Side Energy Resources to Stabilize Intermittent Generator-Based Electric Power Systems
稳定间歇发电机电力系统的需求侧能源量化控制理论
  • 批准号:
    20K04435
  • 财政年份:
    2020
  • 资助金额:
    $ 38万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Coordinated Supply Control and Demand Management
协调供应控制和需求管理
  • 批准号:
    RGPIN-2015-03991
  • 财政年份:
    2019
  • 资助金额:
    $ 38万
  • 项目类别:
    Discovery Grants Program - Individual
CAREER: Learning and Control Algorithms for Electricity Demand Response with Humans-in-the-Loop
职业:人在环电力需求响应的学习和控制算法
  • 批准号:
    1847096
  • 财政年份:
    2019
  • 资助金额:
    $ 38万
  • 项目类别:
    Continuing Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了