Collaborative Research: Agent-Based Modeling and Observation of Intra-Population Variability in Phytoplankton
合作研究:浮游植物种群内变异的基于主体的建模和观察
基本信息
- 批准号:0730239
- 负责人:
- 金额:$ 24.15万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2007
- 资助国家:美国
- 起止时间:2007-09-01 至 2011-08-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Ferdinand L. Hellweger, PINortheastern UniversityCBET-0730239Benjamin S. Twining, PIUniversity of South CarolinaCBET-0730061Collaborative Research: Agent-based Modeling and Observations of Intra-Population Variability in PhytoplanktonThe goal of the project is to investigate and evaluate the agent-based modeling (ABM) approach for simulating intra-population variability in nutrient contents for phytoplankton. Cultural eutrophication, which results from inputs of excess nutrients into water bodies, is an important environmental problem in the US and other countries. The effective management of a water body's trophic state requires an accurate biogeochemical (water quality, eutrophication) model. Present models use a lumped-system modeling (LSM) approach that assumes average properties of a population within a control volume. For modern biogeochemical models that formulate phytoplankton growth as a nonlinear function of the internal nutrient concentration (e.g. Droop kinetics), this averaging assumption can introduce a significant error. Agent-based modeling does not make the assumption of average properties and can simulate intra-population variability in nutrient content. The hypotheses to be tested are (1) intrapopulation variability in nutrient content plays an important role in phytoplankton dynamics in a real system; (2) Accounting for the intra-population variability of nutrient content improves model performance; and (3) Agent-based models can reproduce the observed intra-population variability in nutrient contents. The model will be tested on a real system consisting of a portion of the Charles River in Boston. The expected benefits of the work included improved support for making management decisions for aquatic systems affected by excessive nutrient input. The ABM approach has not been used to explore hypotheses in environmental engineering research. Graduate and undergraduate students will participate in the research. Undergraduate students from under-represented groups will be involved. Dissemination of the results will occur through short courses, on-line resources, conferences, and journal papers.
费迪南德·L·海威格,美国东北大学CBET-0730239南卡罗来纳大学本杰明·S·吐宁,南卡罗来纳大学CBET-0730061合作研究:基于代理的建模和浮游植物种群内变异的观察该项目的目标是调查和评估基于代理的建模方法,以模拟浮游植物营养成分的种群内变异。在美国和其他国家,养殖富营养化是一个重要的环境问题,它是由于向水体中输入过量营养物质造成的。水体营养状态的有效管理需要一个准确的生物地球化学(水质、富营养化)模型。目前的模型使用集中系统建模(LSM)方法,该方法假定控制量内的总体的平均属性。对于将浮游植物生长描述为内部营养物质浓度的非线性函数的现代生物地球化学模型(例如,Droop动力学),这种平均假设可能会引入显著的误差。基于智能体的建模不做平均属性的假设,可以模拟营养含量的种群内变异性。需要检验的假设是:(1)营养物含量的种群内变异性在真实系统中的浮游植物动态中起着重要作用;(2)考虑营养物含量的种群内变异性改善了模型的性能;(3)基于主体的模型可以重现观察到的营养物含量的种群内变异性。该模型将在由波士顿查尔斯河的一部分组成的真实系统上进行测试。这项工作的预期效益包括改善对受营养物质过量输入影响的水生系统的管理决策的支持。ABM方法还没有被用来探索环境工程研究中的假设。研究生和本科生将参与这项研究。来自代表性不足群体的本科生将参与其中。结果的传播将通过短期课程、在线资源、会议和期刊论文进行。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Ferdinand Hellweger其他文献
Copper leaching from recreational vessel antifouling paints in freshwater: A Berlin case study
淡水娱乐船只防污漆中铜的浸出:柏林案例研究
- DOI:
10.1016/j.jenvman.2021.113895 - 发表时间:
2022-01-01 - 期刊:
- 影响因子:8.400
- 作者:
Lucas Schröder;Ferdinand Hellweger;Anke Putschew - 通讯作者:
Anke Putschew
Ferdinand Hellweger的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Ferdinand Hellweger', 18)}}的其他基金
Dimensions: Collaborative Research: Anthropogenic nutrient input drives genetic, functional and taxonomic biodiversity in hypereutrophic Lake Taihu, China
维度:合作研究:人为养分输入驱动中国超富营养化太湖的遗传、功能和分类生物多样性
- 批准号:
1240894 - 财政年份:2013
- 资助金额:
$ 24.15万 - 项目类别:
Standard Grant
Collaborative Research: CAUSES AND MECHANISMS OF CELL DEATH IN FRESHWATER PHYTOPLANKTON
合作研究:淡水浮游植物细胞死亡的原因和机制
- 批准号:
1121233 - 财政年份:2011
- 资助金额:
$ 24.15万 - 项目类别:
Continuing Grant
相似国自然基金
Research on Quantum Field Theory without a Lagrangian Description
- 批准号:24ZR1403900
- 批准年份:2024
- 资助金额:0.0 万元
- 项目类别:省市级项目
Cell Research
- 批准号:31224802
- 批准年份:2012
- 资助金额:24.0 万元
- 项目类别:专项基金项目
Cell Research
- 批准号:31024804
- 批准年份:2010
- 资助金额:24.0 万元
- 项目类别:专项基金项目
Cell Research (细胞研究)
- 批准号:30824808
- 批准年份:2008
- 资助金额:24.0 万元
- 项目类别:专项基金项目
Research on the Rapid Growth Mechanism of KDP Crystal
- 批准号:10774081
- 批准年份:2007
- 资助金额:45.0 万元
- 项目类别:面上项目
相似海外基金
Collaborative Research: CDS&E: Generalizable RANS Turbulence Models through Scientific Multi-Agent Reinforcement Learning
合作研究:CDS
- 批准号:
2347423 - 财政年份:2024
- 资助金额:
$ 24.15万 - 项目类别:
Standard Grant
Collaborative Research: CDS&E: Generalizable RANS Turbulence Models through Scientific Multi-Agent Reinforcement Learning
合作研究:CDS
- 批准号:
2347422 - 财政年份:2024
- 资助金额:
$ 24.15万 - 项目类别:
Standard Grant
CPS: Medium: Collaborative Research: Provably Safe and Robust Multi-Agent Reinforcement Learning with Applications in Urban Air Mobility
CPS:中:协作研究:可证明安全且鲁棒的多智能体强化学习及其在城市空中交通中的应用
- 批准号:
2312092 - 财政年份:2023
- 资助金额:
$ 24.15万 - 项目类别:
Standard Grant
CPS: Medium: Collaborative Research: Developing Data-driven Robustness and Safety from Single Agent Settings to Stochastic Dynamic Teams: Theory and Applications
CPS:中:协作研究:从单代理设置到随机动态团队开发数据驱动的鲁棒性和安全性:理论与应用
- 批准号:
2240982 - 财政年份:2023
- 资助金额:
$ 24.15万 - 项目类别:
Standard Grant
Collaborative Research: Multi-Agent Adaptive Data Collection for Automated Post-Disaster Rapid Damage Assessment
协作研究:用于灾后自动化快速损害评估的多智能体自适应数据收集
- 批准号:
2316654 - 财政年份:2023
- 资助金额:
$ 24.15万 - 项目类别:
Standard Grant
Collaborative Research: III: Medium: VirtualLab: Integrating Deep Graph Learning and Causal Inference for Multi-Agent Dynamical Systems
协作研究:III:媒介:VirtualLab:集成多智能体动态系统的深度图学习和因果推理
- 批准号:
2312501 - 财政年份:2023
- 资助金额:
$ 24.15万 - 项目类别:
Standard Grant
CPS: Medium: Collaborative Research: Developing Data-driven Robustness and Safety from Single Agent Settings to Stochastic Dynamic Teams: Theory and Applications
CPS:中:协作研究:从单代理设置到随机动态团队开发数据驱动的鲁棒性和安全性:理论与应用
- 批准号:
2240981 - 财政年份:2023
- 资助金额:
$ 24.15万 - 项目类别:
Standard Grant
Collaborative Research: III: Medium: VirtualLab: Integrating Deep Graph Learning and Causal Inference for Multi-Agent Dynamical Systems
协作研究:III:媒介:VirtualLab:集成多智能体动态系统的深度图学习和因果推理
- 批准号:
2312502 - 财政年份:2023
- 资助金额:
$ 24.15万 - 项目类别:
Standard Grant
Collaborative Research: Multi-Agent Adaptive Data Collection for Automated Post-Disaster Rapid Damage Assessment
协作研究:用于灾后自动化快速损害评估的多智能体自适应数据收集
- 批准号:
2316653 - 财政年份:2023
- 资助金额:
$ 24.15万 - 项目类别:
Standard Grant
CPS: Medium: Collaborative Research: Provably Safe and Robust Multi-Agent Reinforcement Learning with Applications in Urban Air Mobility
CPS:中:协作研究:可证明安全且鲁棒的多智能体强化学习及其在城市空中交通中的应用
- 批准号:
2312093 - 财政年份:2023
- 资助金额:
$ 24.15万 - 项目类别:
Standard Grant